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ABSTRACT 
Vibrations, especially during the construction phase of new buildings in urban areas, may cause harm to 
neighbouring structures in terms of increased settlements and cracks and a substantial annoyance to humans 
in the area. This paper is devoted quantification of footing vibrations and vibrations at the surface of a half-
space caused by a known vibration source placed on the surface. The half-space consists of different layers 
with given elastic and dynamic properties. The problem is solved numerically by means of a dynamic finite 
element (FE) program for a number of typical suites of layers. Furthermore, algorithms are proposed to pre-
dict the vibration pattern for other layer combinations. 

 
RÉSUMÉ 

Les vibrations, notamment pendant la construction d’édifices en zone urbaine, peuvent causer un certain 
nombre de dommages (affaissement aggravé, fissures, etc.) aux structures situées à proximité et des nuisances 
aux riverains. Cet article concerne la quantification des vibrations de la surface d’un espace semi-infini, 
générées par une source superficielle connue. L’espace semi-infini se compose de couches à propriétés 
élastiques et dynamiques déterminées. Pour résoudre le problème, nous avons choisi une solution numérique 
mettant en œuvre un programme d’analyse EF d’une suite représentative de couches. Avec les résultats 
exposés dans l’article, nous  proposons un algorithme de prédiction du profil vibratoire d’autres combinaisons 
de couches. 
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1 INTRODUCTION 

An increasing part of the design of new structures in 
urban areas is devoted preservation of existing 
monuments and buildings and maintaining a reason-
able environment for the inhabitants near the con-
struction site.  

Vibrations, especially during the construction 
phase, may cause harm to neighbouring structures in 
terms of increased settlements and cracks and a sub-
stantial annoyance to humans in the area. Traffic in-
duced vibrations from new infrastructure develop-
ments are also becoming an increasing concern. 

An estimate of the impact on the surrounding en-
vironment in terms of vibrations is normally re-
quired prior to the construction work. However, this 
is difficult for many reasons. Among others, there is 
lack of ability to quantify the dynamic properties of 
the different vibration sources and the transmissibil-
ity of the actual soil stratum. In connection with the 

latter a general numerical model study in compari-
son to analytical classical solutions has been carried 
out. 

Homogeneous and layered soil conditions are 
considered. The source is approximated to a circular 
plate resting on an infinitesimal soil half-space. The 
plate is subjected to a given vertical harmonic 
movement. The response of the soil surface at dif-
ferent distances from the plate has been calculated in 
terms of vibration amplitudes, as an asymmetric 
problem in a FE formulation. The soil is modelled 
with different properties. The layers are selected 
with varying thickness and succession to be repre-
sentative for normally encountered sand and clay, 
saturated and unsaturated.  
 The numerical results are compared with the clas-
sical empirical solutions and adjustments are made 
valid to practicable applications. The paper contains 
the assumptions, and the results are presented in 
simple terms where the transmissibility can be esti-



mated with knowledge of the distance to the source 
and an assumed soil profile. 

2 DYNAMIC DISPLACEMENTS OF 
CIRCULAR FOOTING 

A basic parameter to estimate ground vibrations at 
the soil surface is the dynamic displacement of the 
circular footing subjected to a vertical cyclic load. 

2.1 Homogeneous soil conditions  
A widely used empirical expression for the homoge-
neous case, has been proposed by Lysmer and 
Richart (1966) and it reads: 

 
 
                     (1) 
 
 

In the Equation (1) m is the mass of the footing 
with radius r, δ(t) is the vertical displacement (func-
tion of time, t). G and µ are shear modulus and Pois-
son’s ratio, respectively and ρ is the mass density of 
the perfectly elastic half space. The coefficient to the 
second term of the left hand side of the differential 
equation (1) is denoted: c = 3.4 r2(Gρ)0.5/(1-µ) The 
coefficient to the last term is the static spring con-
stant: k = k(G,µ) = 4Gr/(1-µ).  
 In the following only harmonic excitation is con-
sidered: Q(t) = Poeiωt where Po is a real constant (the 
amplitude of the force) and ω is the circular fre-
quency. The solution in terms of the vertical dis-
placement following Lysmer and Richart, (1966) can 
be written as δ = δocos(ωt+φ) where φ is the phase 
shift with respect to the excitation and the displace-
ment amplitude is approximately: 
 
  δo = (Po/k) ((1-B ao

2)2 + (0.85 ao)2)-0.5      (2) 
 

where ao =  ωr(ρ/G)0.5 (denoted the frequency ra-
tio) and B = m(1-µ)/(4ρr3). The last factor in Equa-
tion (2) is denoted the magnification factor: 
 
M(B,ao) =   ((1-B ao

2)2 + (0.85 ao)2)-0.5     (3) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Magnification factor as function of ao 

In Figure 1 the magnification factor is shown for a 
relevant interval of B: 0.25<B<5. 
 Equations (1) and (2) are accepted as the solution 
to the homogeneous case without further discussion. 
Equation (2) can be written as: δo/r = poπrM/k where 
po is the excitation expressed as an average stress 
amplitude on the footing base.  

It follows then that the same dimensionless dis-
placement amplitude will occur if r is multiplied by 
a factor C while the soil properties (G, µ, ρ) and M = 
M(B,ao) are unchanged. B is constant if also the 
mass of the footing is C3

 times greater (e.g. same 
mass density but all dimensions C times greater). 
Additionally, ao is constant if Cω is unchanged.  

Shortly, the same dimensionless displacement 
amplitude is obtained if all length dimensions are 
multiplied by the same factor (C) but the excitation 
(in terms of po), the soil properties and Cω are kept 
unchanged.  

2.2 Influence curve, low frequency or static 
conditions  

Before the case with layered soil is addressed the 
concept of an influence curve is introduced. Layered 
soil is treated as a weighted average of a number of 
solutions where the properties for each layer are as-
sumed valid for the entire half-space.  
 As an example we take Equation (1) for the static 
case where ω = 0. All derivatives with t is zero and 
Q on the right hand side is constant. It is now as-
sumed that G = G(f) and µ = µ(f) varies with the di-
mensionless depth f = d/r where d is the depth of the 
layer beneath the surface.  

For each layer we can calculate a spring constant 
k(f) according the afore mentioned equation. The 
value of k =k(f) has the meaning that it is the layer 
spring constant if the entire half-space had the same 
values as found in f. With this in mind k can be writ-
ten as k = k(f) and directly calculated. 
 There exists a defined value of the spring constant 
valid for each profile of G and µ that can be used in 
this static case. This value is denoted ks = ks[G,µ]. 
We use brackets to point out that it depends on the 
entire profiles of G and µ. It is now assumed that ks 
can be calculated as a weighed average of k(f) for 
each depth as: 
 
 
ks  ≈                                             (3a) 
 
 

where i(f) is the weight function denoting the in-
fluence curve for k-1. In order to obtain correct val-
ues in the homogeneous case we have:   
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Furthermore, we know in beforehand that layers at 

great depth have little influence on the spring con-
stant as i(f) → 0 for f → ∞. The concept has the ob-
viously fine quality that if one layer with constant 
properties is increased in thickness it will also have 
an increasing influence on the result and finally ap-
proach the correct solution for the homogeneous 
case.  
 A single profile of k(G(f),µ(f)) together with a 
value of ks (e.g. calculated by FEM) does not define 
a profile of i(f) as many shapes of the i-profile may 
predict the correct settlement.  

Schmertmann (1979) has proposed that this curve 
should be proportional with the stresses beneath the 
centre line of the footing. A simplified influence 
curve is proposed based on this concept with a rea-
sonable cut-off in the depth f = 4. This curve has 
later been improved based on more data (Schmert-
mann et. al, 1978).  

The curve has been further improved by conse-
quently assuming the influence of a certain layer to 
be proportional with the internal work generated in 
this layer for the homogeneous case (Denver, 1981). 

 This enables calculation of both upper and lower 
bound solutions to the real layered problem. A com-
prehensive method, which predicts settlements has 
been presented by Mayne and Poulos (1999) for 
square footings and embedded footings etc. 

Apart from this a rational determination of i(f) is 
difficult. However, it can be stated that the best 
choice is the one yielding the best results for a given 
pattern of usage. This means that this usage should 
be modelled when i(f) is determined. 

2.3 Layered soil conditions 
As each layer has constant k (denoted kj for the j’th 
layer) Equation 3a can be rewritten as: 

 
 

ks  ≈                                              (4) 
 

 
 
fj is the dimensionless depth to the top of the j’th 

layer. When adopting the above-mentioned cut-off 
reasonable results are generated when the deepest 
layer (n) ends at the depth f = 20. From Equation 4 it 
is seen that the usage is enhanced if the integrated 
influence curve is available: 

 
   
ks  ≈                                              (5) 
 
 

 
In the Equation 5 I(f) is calculated as: 
 

 
 

I(f) =                                            (6) 
 

 
If the influence profile is given as an expression 

I(f) (Equation 6) it is a straight forward matter to 
calculate ks by Equation 5. An approximate expres-
sion for I(f) is proposed by (Denver, 1981) and 
given in Equation 7 where the angle is expressed in 
radians. A cut-off has been adopted as 0≤f≤20. 

 
I(f) = atan(20.5755)-atan(f+0.5755)      (7) 

3 DYNAMIC DISPLACEMENT OF FREE SOIL 
SURFACE 

The displacement of the free soil surface is normally 
dominated by the Rayleigh waves (R-waves). They 
can in fact be regarded as a mixture of compression 
waves and shear waves where boundary criteria for 
the free surface are fulfilled. It is well known that R-
waves dominates the wave pattern along the surface 
to a depth of approximately one wavelength for the 
R-waves. 

3.1 Homogeneous soil conditions 
For homogeneous soil a commonly known expres-
sion accounts for both loss of energy due to the 
spreading (geometrical damping) and absorption in 
the soil (material damping) is applied (Hall and 
Richart, 1963): 

 
 
δ1/δ2 =                   (8) 
 
 
δx is the vertical amplitude at the distance ax and β 

is an absorption coefficient.  
 

 
  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Decay of vertical vibration amplitude   
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Figure 2 shows A(a1,β) = δ1/δ2 for different val-
ues of a1 for a2=1 m and for β = 0, 0.05 and 0.10m-1 

– the latter two values represents end points of a 
relevant interval of β-values determined experimen-
tally. From Figure 2 it is concluded that the material 
damping plays a minor role compared with the geo-
metrical damping. 

3.2 Layered soil conditions 
For layered soils we may benefit from the method-
ology used for Spectral Analysis of Surface Waves 
(SASW). Here it is applied that the soil layer in the 
depth of the half wavelength of the shear wave for 
this soil will nearly completely determine the wave 
velocity observed on the surface (Heukelom & Fos-
ter, 1960).  

For a two-layer problem the half wavelengths 
(λ1/2, λ2/2) can be calculated (given soil properties 
and frequency). If dup = min(λ1/2, λ2/2) and dlo = 
max(λ1/2, λ2/2) the resulting surface wave velocity 
vR can be expressed as: 
 
vR = w vR1+(1-w) vR2             (9) 
 

where vR1 and vR2 are the Reyleigh wave veloci-
ties in the upper and lower layer, respectively. The 
value of w = [0|1] is shown in Figure 3. 
 

 

 

 

 

 

 
 
 

Figure 3. Influence (w) of different layer properties on surface 
wave velocity as a function of depth to interface (d) 

4 COMPARISONS OF ANALYTICAL AND FE 
RESULTS 

In order to verify the proposed model a number of 
FE calculations are carried out investigating the dy-
namics of the two-layered soil system for a circular 
footing subjected to dynamic force.  

The analyses are performed in time domain using 
Plaxis Dynamic Module employing absorbing 
boundary formulation at the side and the bottom of 
the model simulating radiation damping at infinity.  
In the analyses the soil is assumed to be linear, ho-

mogeneous, elastic medium. Material damping is in-
cluded in the form of Rayleigh damping.  

An axisymmetric model is constructed with a 
rigid circular footing with radius r=1.0 m. 15 node 
FE elements are used and the mesh is designed as a 
function of the soil properties and the considered 
predominant frequency of the dynamic excitation 
load as given in table 1.  

As the absorbing boundaries applied in Plaxis are 
best suited to high frequency vibrations but not so 
good for absorbing the energy from the low fre-
quency vibrations investigated by Kellezi (2000), the 
size of the FE model is chosen such that the possible 
reflections from the far field are minimized.  

The two layers system consists of a weaker layer 
(Soil I) overlain a stronger layer (Soil II) as shown 
in Figure 4. The FE-net is shown in Figure 5.The 
soil properties of the two layers are shown in table 1.  

 
Table 1: Soil properties 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Calculated example with two layers 

 
The dynamic analysis is considered as a single 

source vibration problem. Points at the footing cen-
tre and at different distances from the footing are 
chosen where the dynamic vertical displacement as a 
function of time is investigated.  

From the start the model is built up with different 
layering with thicknesses di increasing from 0 m, to 
1m, 2m, 4 m, 6m, 8 m, 10 m. The first and the latter 
apply to homogeneous half-space case. 
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Figure 5, FE dynamic model. Same element net used for all 
values of di. In the figure Soil I shown green for di = 8 m  

4.1 Displacement of footing 
The results from the FE analyses are shown in Fig-
ure 6 as vertical footing vibration for time duration 
of 0.5 s and varying layer thicknesses. Layer thick-
nesses di = 10 m, 6 m, 2 m, 1 m, 0 m are chosen for 
the plot. 3% material damping is included in the soil.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6, Vertical footing vibration for varying layer depth.  
 

Amplification of footing vibration is observed for 
d = 2 m, which is expected to correspond to reso-
nance frequency of the layer, see Kellezi and Niel-
sen (2000). 

Furthermore, the vertical displacement amplitude 
has been estimated by the analytical procedure given 
in section 2. k is calculated by Equations 5–7 and ao 
and B by Figure 3 and Equation 9. 

In Figure 7, δb12 means vibration amplitude (dis-
placement) for the combination Soil I over Soil II. 
The curve represents prediction by the analytical 
procedure whereas points correspond to FE calcula-
tions (with material damping). 

There is a difference in the analytical and the FE 
results for the large depth of the Soil I. There is also 
a change in the shape of the curves given in Figure 
7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Calculated footing vertical vibration amplitude for 
the two-layer soil system.  

4.2 Displacements at the free soil surface 
The FE vertical displacement amplitudes have been 
calculated for a number of points with different dis-
tances a to the centre of the footing and different 
values of di. The results are shown relatively to the 
displacement of the footing for the same value of di 
(AFE=δFE free surface / δFE12) in Figure 8 without and 
with material damping. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Calculated vertical vibration amplitude divided with 
the amplitude of the footing for different a 
a) no material damping b) with material damping  
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The different points for the same distance a, rep-
resent different values of di calculated by FE. The 
upper curves (punctuated) in Figure 8 give ampli-
tudes estimated by Equation 8. Equation 10 given in 
the discussion section represents the lower curves  

5  DISCUSSION 

5.1 Displacement of footing 
 

The FE amplitudes of the footing vertical vibrations 
given in Figure 7 are smaller than calculated by the 
proposed analytical procedure. The reason is two-
fold:  

The algorithm proposed by Lysmer and Richart 
(1966) for homogeneous soil (di = 0 and 10 m) does 
not include material damping. As material damping 
is included in the FE-calculations smaller displace-
ments are obtained.  

At depth of about di = 2 m relatively greater val-
ues are observed as at these depths compression 
waves (p-waves) reflected by the interface between 
the layers are approximately in phase with the exci-
tation. This produces a larger amplification than 
predicted by the analytical model (as this effect is 
not included). However, the prediction is still on the 
safe side in the sense that greater displacements are 
predicted. 
 
5.2 Displacements at free soil surface 
 
The displacements of the free surface (relatively to 
the displacement of the footing) are significantly 
smaller than calculated by Equation 8. The reason 
may be that the decay in amplitude for greater dis-
tances is estimated as the energy loss of the disper-
sion of pure surface waves (Rayleigh waves). This 
corresponds to the power (0.5) of the first factor of 
Equation 8. As body waves correspond to a greater 
power a modified equation is proposed as given in 
Equation 10.  
 
 
 
                    (10) 
 
 

The power in this equation starts with 2 near the 
footing and approaches 0.5 at greater distances. The 
second factor representing the material damping is 
unchanged.  

The estimated relative displacements are calcu-
lated using Equation 8 and shown in Figure 8. The 
result are in excellent fit for the case without damp-
ing, (Figure 8a) indicating that the geometric damp-
ing is correctly modelled. In the case with damping, 
(Figure 8b) too great amplitudes are still predicted. 
The reason may very well be that the used material 

damping in the Equation 8 (β=0.075m-1) does not 
correspond exactly with the values applied in the FE 
analyses. In order not to under predict the displace-
ment Equation 10 is recommended on the basis of 
the results of this study.  

6  CONCLUSIONS 

From the above investigation the following conclu-
sions can be drawn:  

A simple analytical interpolation procedure pre-
dicting the footing vertical vibration amplitude for 
layered soil has been proposed. A series of FE 
model calculations confirmed the procedure in terms 
of reasonable results. However more research is 
needed further developing the procedure taking into 
account material damping and the resonance effect 
for particular layer depths. 

The decay of vertical vibrations amplitudes at the 
free surface for greater distances is substantially 
greater than predicted by the traditional Equation 8. 
A modified analytical expression, Equation 10, has 
been proposed on basis of the present study.  
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