Spirit of Krebs Ovesen Session - Challenges in geotechnical engineering XIV ECSMGE

Transcendent foundation solutions

Jørgen S. Steenfelt, COWI, Denmark

1 Sep. 23 Spirit of Krebs ovesen

Spirit of Krebs Ovesen Session - Challenges in geotechnical engineering XIV ECSMGE

Transcendent foundation solutions

Cross pollination of scientific and industrial disciplines to overcome economic and technical challenges in foundation of large bridge structures

COWI contribution to Jubilee Volume, 75th anniversary of K. Terzaghi's "Erdbaumechanik"

Introduction - Outline

- Why this topic?
 beyond the long words
- Geotechnical challenges
 exemplified by major Fixed Links & bridge structures
- Case histories of challenges
 - practice runs at home
 - backbone for global involvement
- Conclusion

Why transcendent foundation solutions?

Why transcendent foundation solutions?

- Basics still "Terzaghian"
- Operational environment changed dramatically
- Every decade changes in
 - field testing
 - laboratory testing
 - numerical & physical modelling
 - constitutive modelling
 - monitoring
 - construction techniquesITC

Why transcendent foundation solutions?

- Changes in role and Society
 - increasing competitiveness & complexity
- Buzz words
 - "fast tracking" "turn key projects"
 "DBO" "PPP"
- Geotechnical structural
 roles and persons merge/separates
 - cross border knowledge and understanding
 - creative use of lateral thinking
 cross pollination of disciplines & technologies

Fixed Links & landmark bridges

Geotechnical challenges

Do not forget the interfaces Soil - Water - Structure interaction

Fixed Links and Landmark structures exemplify challenges

- by nature often cross border
- ability to grasp & communicate
 - non-tech issues
 - "soft demands" to sustainable solutions
- Feasibility studies demonstrate need for cross pollination
 - -geo, -structural, -hydraulic, -environmental,
 - -surveyors, -architects, -traffic planners,
 - -biologists, -bankers, -economists, -lawyers,
 - -3D animators, -NGO's, -politicians
- But we must ask:

8 | Sep. 23 | Spirit of Krebs ovesen

Are we blindly accepting "natural" trends?

- are we amenable to new outlooks?

From outside

From inside

10 | Sep. 23 | Spirit of Krebs ovesen

Concept to track record for Fixed Links

 Practice runs with internal Links

Little Belt 1970 600 m 42 m

Farø Bridges 1985

> 260 m 26 m

Great Belt 1998 1624 m 65 m

Concept - track record

- Practice runs with
 internal Links
- Trans-national Links
- Backbone for new challenges
- Øresund 490 m 2000 57 m

Femern Belt 2017? 700-2000 m

Concept - track record - new opportunities

at truly international scope & scale

4 examples of challenges & solutions

- Great Belt Link -West Bridge (Denmark)
- Great Belt Link -East Bridge (Denmark)
- Bangabandhu Bridge (The Jamuna River, Bangladesh)
- Offshore wind turbine foundations (Denmark, Belgium)

Great Belt Link - West Bridge

Challenge

- Deep waters clay till
- Fast track project

Solution

- Reduce risky offshore operations (open dredge or pneumatic caissons)
- Mega-size onshore
 pre-fabrication

Great Belt - West Bridge

- 6.6 km multi-span concrete bridge
 51 spans 110.4 m;
 12 spans 81.75 m
- Box girders on pier shafts
- Common gravity based caisson foundation
- Levelled stone beds

Great Belt - West Bridge

- Pre-fab. Yard
- Erection by "Svanen" (Purpose built heavy lift 6400 t)
- Multi-purpose jack-up

4 examples of challenges & solutions

- Great Belt Link -West Bridge
 (Denmark)
- Great Belt Link -East Bridge (Denmark)
- Bangabandhu Bridge (The Jamuna River, Bangladesh)
- Offshore wind turbine foundations (Denmark, Belgium)

Great Belt - East Bridge

- 6.8 km suspension
 bridge
 1624 m main span;
 534 m side spans & approach
 bridges
- Steel box girders
- Concrete box girders
- Gravity based caisson
 foundation
- Stone beds on clay till

Great Belt - East Bridge

- Two new separate dry docks
- Towing of caissons up to 50 000 t
- Stone beds

Great Belt - East Bridge

- Inspiration from Little Belt
- Reduce effect from H = 505 MN by stone wedges
- Large scale sliding tests
- Comprehensive soilstructure interaction analysis

4 examples of challenges & solutions

- Great Belt Link -West Bridge (Denmark)
- Great Belt Link -East Bridge
 (Denmark)
- Bangabandhu Bridge (The Jamuna River, Bangladesh)
- Offshore wind turbine foundations (Denmark, Belgium)

Bangabandhu Bridge

- Crossing of unpredictable Jamuna River
- World Bank study 70'es:
 - traditional long suspension spans
 - 20-40 m open dredge concrete caissons
 - 80 m foundation depth
- 1 billion US\$ prohibitive
- Issue re-opened in 1980'es
- Off shore piling matured
 driving of 3 m piles to 10 000 t capacity
- Recession in offshore oil market

Bangabandhu Bridge

- Piled solution viable
- 83 m Ø3.15 m piles grouted at bottom

Bangabandhu Bridge

- Conical in situ cast pile caps
- Cantilevered concrete
 box girders
- Advantages
 - low cost
 - improved lateral stiffness
 - transparent design (scour - liquefaction)
 - 121 piles installed
 (2 month before low water)

4 examples of challenges & solutions

- Great Belt Link -West Bridge (Denmark)
- Great Belt Link -East Bridge
 (Denmark)
- Bangabandhu Bridge (The Jamuna River, Bangladesh)
- Offshore wind turbine foundations (Denmark, Belgium)

Offshore wind turbine foundations

Building on bridge experience

- Gravity base foundations
- State-of-the-art design for reinforced concrete shell structures

Offshore wind turbine foundations

Special challenges

- Soil-foundation-wind turbine dynamic
- Loads depend on system response
- Soil stiffness nonlinear iterations a must
- Dominant horizontal loads
- High ballast dead weight minimum structural dead weight
- Cost of foundation decisive for viability of wind farm development

Nysted windfarm - Denmark

- Nysted Offshore windfarm Denmark world record: 72 Bonus 2.3 MW turbines 10 m water depth; clay till with boulders
- Mono-pile not feasible
- 1300 t pre-fabricated caissons

Nysted windfarm - Denmark

- COWI designer for

 contractor Per Aarsleff
 Client DONG Energy
- Foundation design
- Conical shape due to ice

270 mm dæksten tre lag

Nysted windfarm - Denmark

- COWI designer for
 contractor Per Aarsleff
 Client DONG Energy
- Foundation design
- Conical shape due to ice
- Transport on 10 000 t
 barge
- Installation by purposebuilt crane
- 4 foundations per 10 days
- Successful symbiosis

Trend: Bigger and deeper

32 | Sep. 23 | Spirit of Krebs ovesen

Thornton Bank offshore windfarm - Belgium

Thornton Bank offshore windfarm - Belgium

Project on-going based on track record

- Owner: C-Power n.v., Belgium
- Turbine supplier: REpower, Germany
- Marine contractor :
 Dredging International, Belgium
- Designer: COWI, Denmark
- 60 wind turbines (5 MW) (first phase 6)
- Rough North Sea conditions water depth > 25 m

Thornton Bank offshore windfarm - Belgium

- Offshore wind turbine foundation real geotechnical challenge
- Involves many disciplines
- Requires cross pollination and lateral thinking
- Due to organisation set-up designs need to be generic!

Spirit of Krebs Ovesen Session - Challenges in geotechnical engineering XIV ECSMGE

Conclusion

Conclusion

- Facing challenges in geotechnical engineering we learn from
 - Mistakes (not just our own!)
 - Precedents
 - Colleagues, competitors, mentors
- And gain insight from
 - other disciplines (cross pollination)
 - lateral thinking
 - open-mindedness
- Behaving in this manner we act in the spirit of Krebs Ovesen

