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PREFACE

“ There are two approaches to a natural problem. They are the approach of the pure scien
tist and that of the engineer. The pure scientist is interested only in truth. For him there 
is only one answer - the right one - no matter how long it takes to get it. For the engineer, 
on the other hand, there are many possible answers, all of which are compromises between truth 
and time, for the engineer must have an answer now; his answer must be sufficient for a given 
purpose, even if not true. For this reason an engineer must make assumptions - assumptions which 
in some cases he knows to be not strictly correct - but which will enable him to arrive at an 
answer which is sufficiently true for the immediate purpose.”

These remarks by H. Q. Golder (1948) describe better than anything else the author’s own 
approach to the subject of earth pressure calculation. His principal aim has not been to find 
the mathematically exact solutions, however complicated, but, on the contrary, to indicate the 
simplest solutions which are sufficiently correct for practical purposes.

The above citation is actually Golder’s opening to an article about C.A. Coulomb who, in 
1776, founded the classical earth pressure theory. Although, since then, innumerable papers and 
books have been written on the subject of earth pressure, little actual progress has been made. 
Of course, many valuable tests have been carried out, and considerable practical experience has 
been gained, but general theories capable of accounting for the observed facts have been very 
scarce.

That this is so can be seen from the fact that up to the present day the most commonly used 
earth pressure theory is still Coulomb’s. Actually, Coulomb himself developed his theory for a 
certain type of structure, viz. retaining walls, for which it proved to be an excellent approx
imation. Later, however, his theory has - for want of better methods - been applied to several 
other structures with more or less misleading results; mainly because the possible movements of 
these structures are not compatible with the possible deformations of the earth, corresponding 
to the simple figures of rupture considered in Coulomb’s theory.

The purpose of the present work is to introduce a new general method for the calculation 
of earth pressures. It embraces a far wider field of possible rupture-figures than those pre
viously known, and this enables the choice of rupture-figures compatible with the movements of 
the considered structures in the state of failure. The corresponding calculations have been 
made possible, partly by means of the well-known KBtter’s Equation, and partly by means of a 
connection, established by the author, between two known but hitherto unrelated methods of cal
culation.

Earth pressure calculation has, admittedly, not been made simpler by the introduction of 
the author’s method, but this is the price one has to pay for greater accuracy. Still, most of 
the calculation methods developed in the present work are relatively simple as compared with 
many of the methods in common use for the calculation of other structures as, for example, 
bridges.

With regard to economy, it is evident that smaller factors of safety can be allowed when 
more exact calculation methods are available. Therefore, the author’s method, when employed in 
combination with suitable safety factors, should be able to effect considerable savings as com
pared with conventional design methods.
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READER’S GUIDE

The present book is divided into 9 main sections and an Appendix. Each main section is 
indicated by a single numeral (e. g. Section 7), primary subsections by two numerals (e. g. Sec
tion 74) and secondary subsections by three numerals (e.g. Section 742).

Formulae are indicated by four numerals, the first two of which refer to the primary 
subsection, in which the formula occurs (e.g.: Formula 7405 is the fifth formula in Section 74). 
Figures are usually indicated by two numerals and a capital letter; the numerals refer to the 
primary subsection, in which the figure occurs (e.g.: Fig. 74C is the third figure in Section 74). 
Examples are, finally, indicated by two numerals and a small letter; the numerals refer to the 
primary subsection, in which the example occurs (e.g.: Example 74b is the second example in 
Section 74).

All the main symbols or notations are listed in the Appendix. For such symbols, which 
may attain positive or negative values, the sign rules are indicated, and these must always be 
observed carefully. Some of the basic concepts are indicated in Section 12; others may be found 
by means of the Index in the Appendix. References are also listed in the Appendix, and in the 
text they are indicated by the name of the author and the year of publication.

In order to get an initial idea of the new calculation method it should suffice to read 
the English or the Danish summary in the Appendix. A more thorough general orientation may be 
obtained by reading.Sections 1, 31, 341, 35-37, 41, 47, 59, 61-63, 65 and 91-92.

In order to solve a practical problem, e. g. concerning the design or calculation of a 
certain earth retaining structure, it is usually sufficient - after having obtained the general 
orientation mentioned above - to study the pertaining subsections in Sections 7 or 8.

If the problem presents unusual features, or is of a more theoretical nature, it may 
prove necessary to study selected parts of Sections 3-6 in order to work out a solution.

As an aid to practical calculations, the Appendix contains a set of tables, by means of 
which the internal forces in a rupture-circle can be calculated for friction angles of 0 and 
30°. It also contains a set of graphs, by means of which the earth pressure on a vertical wall 
(horizontal ground surface) can be calculated for any location of the rotation centre on the 
wall, and for any friction angle.

For the preparation of tables, such as those in the Appendix and in Section 5, a calcul
ating machine is necessary. Otherwise, all calculations can be effected by means of a slide 
rule, as has been done in the numerical examples. In all these examples, the units m (metres) 
and t (metric tons) have been used, but any other system of units (e.g. ft and lbs) may equally 
well be used. The quantities indicated in the tables and graphs in the Appendix are all dimen
sionless.



1. INTRODUCTION

11. Earth Pressure Problems

Earth pressure problems, taken in their widest sense, are concerned with 
the determination of the stresses acting inside earth masses or between these 
masses and structures in contact with them.

However, such problems are usually subdivided into at least 3 different 
groups, viz.:

1) Lateral earth pressure problems.
2) Foundation problems.
3) Stability problems.

The main object of the present work is to deal with the lateral earth press
ure problems. However, the method developed for this purpose is in principle al
so applicable to foundation and stability problems.

Lateral earth pressure problems are sometimes further sub-divided into the 
following 3 groups:

la) Earth pressure against rigid walls.
lb) Earth pressure against flexible walls.
lc) Earth pressure against underground structures.

The third of these groups will not be considered in the present work. With 
regard to the first two groups, no distinction will be made between rigid and 
flexible walls, and for the following reason:

The author’s theory is a theory of rupture, i. e., the calculation is based 
on the state of failure. In such a state the elastic deformations of most struc
tures can be disregarded in comparison with the plastic deformations and move
ments. Consequently, all walls can be considered either completely rigid, or made 
up of a finite number of rigid parts connected by yield hinges.

The present work will be concerned exclusively with problems of plane 
strain, or with such problems which may with sufficient accuracy be treated as 
plane.

The following structures shall be dealt with: retaining walls, anchor 
slabs, free sheet walls, anchored sheet walls, fixed sheet walls, braced walls, 
double sheet walls and cellular cofferdams.
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12. Soae Basic Concepts.

Earth pressure is the force acting between the earth and a structure such 
as, for example, a wall. If the wall does not move at all, we have the so-called 
earth pressure at rest. If the wall is forced against the earth, we have passive 
pressure, and, if it retreats from the earth, we have active pressure.

The pressure centre of a wall (or part of a wall) is the point, in which 
the corresponding earth pressure resultant intersects the wall. The rotation 
centre of a wall (or part of a wall) is the point, about which the wall rotates 
in the state of failure.

A rotation is described as positive, when it involves an increase of the 
angle (through the earth) between the wall and the original ground surface; in a 
negative rotation this angle is decreased. Further, a rotation is termed “nor- 
mal”, when all points at the wall move in the direction of the corresponding 
normals to the wall.

The condition of failure for the earth is: x = c + o tan <p , where c (the
cohesion) and <p (the friction angle) are constants. If c = 0 , the earth is said
to be cohesionless, and if <p = 0 , frictionless. The earth has an effective unit 
weight y (uplift deducted), and its surface may be loaded with a vertical unit
surcharge p. In the theoretical case of y = 0 , the earth is termed weightless,
and in the case of p = 0 , it is said to be unloaded.

When a sliding movement takes place between wall and earth we have: 
f = a + e tan 6 , where e and f are the unit normal and tangential earth press
ures respectively, whereas a (the adhesion) and 6 (the wall friction angle) are 
constants. If a = 0 and 6=0, the wall is said to be perfectly smooth, and, in
the case of a = c and 6 = <p , perfectly rough.

A line of rupture (or rupture-line) is a curve, for which the normal and 
shear stresses in any small element satisfy the condition of failure. This con
dition is also satisfied by the stresses in a line forming angles 90° ± <p with
the rupture-line. This second line, which, according to the definition, is also 
a rupture-line, is sometimes called a pseudo-rupture-line.

The whole pattern of rupture-lines in the earth (or a finite part of the 
earth) is termed a figure of rupture (or rupture-figure).

When the condition of failure is fulfilled for any point within a certain 
finite area, this area is called a rupture-zone (or plastic zone), and the cor
responding rupture-figure is termed a zone-rupture.

When the failure condition is fulfilled for all points on a certain curve 
only, this curve is a rupture-line, and the corresponding rupture-figure is 
termed a line-rupture. In a line-rupture, the pseudo-rupture-lines are all in
finitely short. Finite areas, in which the condition of failure is not fulfilled 
for any point in the interior, are called elastic zones.

More complicated rupture-figures, containing more than one plastic or 
elastic zone, are termed composite ruptures.
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13. Short Historical Review

The classical earth pressure theory was founded in 1776 by Coulomb, who in
troduced most of the basic concepts and assumptions still generally used in earth 
pressure calculations. Thus he stated the so-called Coulomb’s law of shearing 
resistance: t = c + no , and he introduced the principle of determining the ac
tive earth pressure as a maximum value. Further, by assuming that the lines of 
rupture were straight he derived the well-known Coulomb formula for active earth 
pressure on a retaining wall.

Rankine, in 1857, approached the problem in an entirely different way.
He started by investigating the conditions of equilibrium and failure for an in
finitely small earth element in a semi-infinite earth mass. By further assuming 
the lines of rupture to be straight, and with the aid of the boundary conditions 
at the ground surface, he developed the well-known Rankine formulae for active 
and passive states of failure in the ground.

Whereas Coulomb and Rankine were able to deal with straight rupture-lines 
only, Kotter succeeded in 1903 in deriving the differential equation governing 
the stresses in a curved rupture-line. Very little use has been made of Kotter’s 
equation since then, probably because it is not quite simple. In the present 
work, however, extensive use shall be made of it.

At approximately the same time began the development of the different 
theories of plasticity, chiefly by Saint Venant (1871), von Mises (1913), Prandtl 
(1920, 1927), Hencky (1928), Nadai (1928), Jiirgenson (1934) and Odqvist (1934). 
Although most of these theories were developed for metals they could also be ap
plied to earth. Based on Coulomb’s failure condition Prandtl determined in 1920 
the rupture-figures corresponding to the pressure of weightless or frictionless 
earth on a perfectly rough wall. In 1926 v. Karman solved the corresponding 
problem for heavy earth with internal friction.

Stability investigations and earth pressure calculations based on the maxi
mum principle but assuming circular rupture-lines, were made by Fellenius in 
1927. The circular rupture-line- enables a simple analysis to be made for friction
less earth, because the unknown normal stresses do not enter into the moment 
equation about the centre of the circle. Later investigations (Skempton 1948 , 
Cadling and Odenstad 1950) have shown that this so-called “ q> = 0” -method usually 
gives very reliable results, at least when used in stability analyses.

A corresponding calculation can be made for earth with internal friction, 
when suitable logarithmic spirals are used as rupture-lines. This is due to the 
fact that for such a spiral the angle between radius-vector and normal is con
stant, and when this angle is equal to qj , the unknown stresses in the spiral are 
directed towards its pole. Consequently, they do not enter into the moment equa
tion about the pole. The first to make extensive use of this method was Rendulic 
(1935 and 1940), who succeeded in determining the general relation between the
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magnitude of the earth pressure on a smooth vertical wall and the location of its 
pressure centre. Rendulic was also the first to calculate a composite rupture.

Until 1936, little or no attention was paid to the deformations accompany
ing the stresses in the earth. This may be due to the fact that in the plane 
case of plastic equilibrium the stresses can be determined without any investi
gation of the deformations. However, in 1936, Terzaghi drew attention to the 
fact that the deformations in the earth must be compatible with the movements of 
the wall. Consequently, the earth pressure must be a function of these movements. 
This is a very important fact, which the author has made one of the basic prin
ciples of his new method.

Ohde was well aware of the above-mentioned fact when, in 1938, he investi
gated in great detail the two special cases of a vertical wall rotating about its 
lower and upper edge respectively. In the latter case he assumed a circular rup
ture-line and made use of Rotter’s equation. This, in combination with the 3 
equilibrium conditions for the earth mass above the rupture-line, enabled him to 
determine the magnitude of the earth pressure and the location of its pressure 
centre. Moreover, Ohde was probably the first to point out the essential differ
ence between a zone-rupture and a line-rupture. In a new series of articles 
(1948-53) Ohde has further developed his earth pressure theories.

In recent years the theories of plasticity have been developed considerab
ly, mainly by Sokolovski (1942), Preudenthal (1950), Nadai (1950), Drucker, Hodge 
and Prager (1950-51). The author has also made a small contribution (Brinch Hansen 
1952). It should be specially mentioned that Sokolovski has dealt with a great 
number of earth pressure and foundation problems. He considers zone-ruptures ex
clusively, however.

The above-mentioned works are mainly theoretical. As regards tests and 
practical experience, a considerable number of authors have concerned themselves 
with active earth pressure, whereas only a few have studied passive earth press
ure (e.g. Franzius 1924). The most remarkable earth pressure tests have been 
made recently by Tschebotarioff (1948-51) and Rowe (1952), who have both proposed 
empirical calculation methods for anchored sheet walls.

The few names mentioned above indicate, in the author’s opinion, the most 
important steps towards a clearer understanding of earth pressure problems and 
development of suitable calculation methods.

Many other authors have made more or less valuable contributions to earth 
pressure literature, which is now so plentiful that it would be quite out of the 
question to give a comprehensive review of it. Short historical summaries have 
been given by Feld (1928 and 1940), Brown (1948), Ohde (1948) and others. Fur
ther, Golder (1948) has written about Coulomb, and Cook (1951) about Rankine.

The list of references given in the Appendix is also far from being com
plete. It contains only the contributions which, in the author’s opinion, are 
the most valuable.



1 . In t rodtic t i on 17

14. Methods ot Calculation

Practically every known method of earth pressure calculation belongs to one 
or another of the following four groups:

1) Extreme-methods (e.g. Coulomb, Fellenius, Rendulic)
2) Theories of plasticity (e. g. Rankine, Prandtl, Kotter, Frontard, Ohde)
3) Theories of elasticity (e.g. Boussinesq, Rifaat, Bretting)
4) Empirical methods (e. g. Christiani, Danish Rules, Tschebotarioff, Rowe)

An extreme-method is characterized by the fact that it makes use of one 
equilibrium-condition only, but supplements it by the necessary number of extreme- 
conditions, stating that the earth pressure should be a maximum (active pressure) 
or a minimum (passive pressure). It is essential that the unknown stresses in the 
rupture-line do not enter into the equations. This is obtained by choosing a lo
garithmic spiral as a rupture-line and taking the moments about its pole (Rendu
lic). From this moment equation the earth pressure can be found, provided that 
the location of the pressure centre is known. In the special case of friction
less earth the spirals become circles (Fellenius), and in the case of an infinite
ly distant pole they become straight lines (Coulomb).

The theories of plasticity determine, in principle, the 3 unknown stresses 
at any point by means of the 2 equilibrium conditions for a small earth element in 
combination with the failure condition. In practice, however, the exact integra
tions can only be carried out in a few simple cases, for example, with straight 
rupture-lines (Rankine) or with spiral and straight rupture-lines (Prandtl). Nu
merical integrations have been carried out by v. Karman and others.

From the 3 above-mentioned equations it is possible to derive a single equa
tion expressing the variation of the stress in any given rupture-line (Kotter).
In order to utilize this equation, however, it is necessary to know the stress 
in the rupture-line at the ground surface (or at another boundary). Unfortunately, 
this knowledge can only be obtained when the rupture-line intersects the surface 
at a certain angle, or when the earth is cohesionless and unloaded.

One way to utilize Hotter’s equation is to consider only the boundary con
ditions at both ends of a rupture-line without investigating the equilibrium of 
the earth above the rupture-line. Such methods shall be termed boundary-methods. 
They presume that the rupture-line meets the surface and the wall at the stati
cally correct angles, so that the boundary stresses can be determined. As Hotter’s 
equation furnishes a relation between these stresses, the unit earth pressure can 
be calculated at the point where the rupture-line meets the wall. In special cases 
this can be done without investigating the actual shape of the rupture-line (Fron- 
tard), but in the general case this shape must be determined or assumed to be 
known (Jaky).

Hotter’s equation, however, may also be used in an entirely different way, 
viz. for investigating the equilibrium of the earth mass above a rupture-line. 
Methods based on this principle, using all 3 conditions of equilibrium, but no 
extreme-condition, shall be termed equilibrium-methods. They presume that the
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general shape of the rupture-line is known, and that the boundary stresses in 
the rupture-line at ground surface can be determined. In this case the equations 
of equilibrium enable the calculation of the earth pressure as well as the loca
tion of its pressure centre, provided that the location of the rotation centre is 
given (Ohde).

A special theory of plasticity is the so-called limit analysis (Drucker, 
Hodge and Prager). In this method it is shown that the actual value of the earth 
pressure lies within an interval, the limits of which can be determined by means 
of so-called statically admissible stress fields and kinematically admissible ve
locity fields respectively. For the latter it is found that the rupture-line must 
be a logarithmic spiral, and the calculation is then carried out as in Rendulic’s 
method, using the extreme-principle.

Theories of elasticity are either exact or approximate. In the former case 
the 3 stresses and the 2 displacements at any point are, in principle, determined 
by Hooke’s law and the equilibrium conditions for a small earth element. However, 
such exact calculations are only possible in very simple cases, for example that 
of a concentrated force on' the surface of a semi-infinite elastic medium (Boussi- 
nesq).

Therefore, in applying theories of elasticity to earth, pressure problems, 
some very simplifying assumptions are usually made. It may be assumed, for ex
ample, that passive earth pressure increases in direct proportion to the deflec
tion of the wall, the ratio between pressure and deflection being proportional 
to the depth (Rifaat). For frictionless earth a more refined approximate theory 
of elasticity has been developed (Bretting).

Many of the approximate theories of elasticity must actually be considered 
as semi-empirical and are, as such, borderline cases of the fourth group, the 
empirical methods. These are based either on model tests (Tschebotarioff, Rowe), 
full-scale tests or general practical experience (Christiani, Danish Rules).

The empirical methods and the theories of elasticity both aim at an investi
gation of the stresses and deformations occuring under actual working conditions. 
This implies the advantage that the actual deformations of the structures can be 
calculated, and that the risk of cracking of reinforced concrete sections can be 
investigated. The safety against the first local failure can also be determined, 
but not the safety against the ultimate total failure.

Conversely, the extreme-methods and the theories of plasticity aim at an 
investigation of the stresses occurring in the state of failure. This implies the 
advantage that the safety against ultimate failure can be determined, and that 
the calculations become simpler and are independent of the previous “history” 
of the structure. The most notable shortcomings of these methods are that neither 
the actual deformations under normal working conditions nor the safety against 
local failure or cracking can be determined.

In practical engineering there seems to be an increasing tendency to employ 
design methods which are based on the state of failure. Coulomb’s method was pro
bably one of the first instances of this, and the conventional design of rein
forced concrete sections is another. As further examples can be mentioned K.W.
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Johansen’s “ rupture- line- theory” for slabs (1943), H. Lundgren’s “stringer 
theory” for cylindrical shells (1949) and the “limit analysis” of Drucker, Hodge 
and Prager for general designing purposes (1951). The author’s new earth pressure 
theory is based on the same principle.

13. Limitations of inoia Methods

In order to be fully satisfactory a general earth pressure theory should 
enable a reasonably correct calculation of the earth pressure corresponding to 
any assumed movement of the retaining structure. We shall examine the known me
thods from this point of view.

Empirical methods may be very useful, but their proper application is usual
ly limited to such constructions and conditions as they were originally developed 
for. Being thus neither general nor having any theoretical basis, they do not sa
tisfy the requirements.

The theories of elasticity are far too complicated for practical use in en
gineering problems, unless very simplifying assumptions are made, and if such as
sumptions are made the methods usually give too inaccurate results. Moreover, all 
theories of elasticity possess the inherent defect of not giving any information 
about the safety against ultimate failure.

Of the extreme-methods we shall first consider Coulomb’s. Actually, it is 
a method for calculating zone-ruptures, and as such its severest limitation is 
that it uses straight rupture-lines only. For active pressures this involves in
significant deviations only, but for passive pressures it often leads to consi
derable errors. For the calculation of line-ruptures Coulomb’s method cannot be 
used at all, as it allows neither the determination of the pressure centre nor 
that of the rotation centre.

Although Fellenius’ method may be used for zone-ruptures, its most impor
tant application is for the calculation of line-ruptures. As the rupture-line is 
a circle and the earth above the circle rotates as a rigid body, the rotation 
centre of the wall must be the normal projection of the centre of the circle on 
the wall. However, a unique solution is only possible for frictionless earth. If 
a circular rupture-line is used for earth with internal friction then additional 
and more or less arbitrary assumptions are necessary in order to solve the pro
blem.

No such assumptions are necessary in Rendulic’s method, because logarithmic 
spirals are used here as rupture-lines. Like Fellenius’ method, Rendulic’s can be 
used for zone-ruptures as well as for line-ruptures. It has the drawback, however, 
of not providing any definite relation between the spiral rupture-line and the 
corresponding rotation centre for the wall (at least when the earth is assumed in
compressible). Actually, the spiral must be considered as an approximation of an 
unknown circular rupture-line.

In the theory of limit analysis (Drucker, Hodge and Prager) this drawback 
does not occur, as the rotation centre of the wall is found to be the normal pro
jection of the pole of the spiral on the wall. However, this theory is based upon
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an assumption regarding the dilatation, which does not seem to conform to experi
mental facts.

Exact solutions by means of the theories of plasticity such as Rankine’s 
and Prandtl’s may be very valuable, but they are only correct when the boundary 
conditions are properly satisfied. Otherwise, they are merely approximations. 
Moreover, Prandtl’s solution is limited to the special cases of frictionless or 
weightless earth. Both solutions concern zone-ruptures only and are inapplicable 
to line-ruptures.

The boundary-methods must be subdivided into two groups. Those in which the 
shape of the rupture-line need not be known (Frontard) may lead to the correct re
sults when the proper boundary conditions are used. Such methods, however, are li
mited to the special cases of frictionless or weightless earth. Those methods 
which require the knowledge of the shape of the rupture-line (Jåky) suffer from 
the defect that the equilibrium conditions for the earth mass above the rupture
line are usually not satisfied. This may imply very serious errors. Both groups 
of boundary-methods can only be applied to zone-ruptures, because they can only 
determine the earth pressure at a point where a rupture-line meets the wall.

We now have only the equilibrium-method left. Ohde used this method for the 
calculation of a line-rupture, but in the present work it shall be shown that it 
can also be applied to zone-ruptures and composite ruptures. Theoretically, a 
rupture-line should always make certain definite angles with the ground surface 
and the wall, but this requirement cannot be fulfilled by simple rupture-lines 
such as circles. However, for other angles the boundary conditions become indefi
nite, in which case it seems impossible to use the equilibrium-method at all.
Ohde succeeded in doing so only because he considered the special case of cohe
sionless earth with an unloaded surface, in which case the boundary stress is zero, 
independent of the angle between rupture-line and surface.

It will thus be seen that none of the known methods satisfy the requirements 
for a general earth pressure theory, at least not in their present form.

1. Introduction

16. Proposed New Method

In most cases, particularly for line-ruptures, it is impossible to satisfy 
at the same time the theoretical boundary conditions at both ends of a simple rup
ture-line and the equilibrium conditions for the earth mass above the rupture-line. 
The question then arises: Is it most important to do the former or the latter ?

An answer to this question is provided by the fact that at least one of the 
extreme-methods, viz. the “<p = 0”-analysis by means of circular rupture-lines, 
is known to yield very reliable results (Skempton 1948, Cadling and Odenstad 1950) 
in spite of the fact that the critical rupture-circle usually meets the ground 
surfaces at angles differing considerably from the statically correct ones.

Consequently, it seems justifiable to draw the conclusion that the exact 
fulfilment of the boundary conditions (as regards the angles between rupture-lines 
and boundaries) is of minor importance and can, in fact, be completely disregarded 
without giving rise to important errors.
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The only remaining obstacle to a general application of the equilibrium- 
method is the fact that, when a rupture-line does not meet a boundary at the sta
tically correct angle, the corresponding boundary stress in the rupture-line is 
indefinite.

The author has overcome this difficulty in the following way: Let us consi
der a problem which can be solved by means of the extreme-method, employing, for 
example , spiral rupture-lines. The same problem might be solved by means of the 
equilibrium-method, if the boundary stress at one end of the spiral were known.
A comparison will show that if a certain boundary stress is assumed the two me
thods will lead to identical results. Further investigation will show that this 
boundary stress corresponds to a special boundary condition, which does not re
quire a certain angle between rupture-line and boundary, but merely indicates the 
boundary stress as a function of the actual angle.

By the thus established connection between the extreme-method and the equi
librium-method two things have been obtained. First, a special boundary condition 
has been found which enables the use of the equilibrium-method, irrespective of 
the value of the angle between rupture-line and boundary. Second, the results of 
such a calculation will be identical with those of a corresponding extreme-calcu
lation and, therefore, just as reliable.

So far, we have considered the same rupture-line in both methods, viz. a 
logarithmic spiral, because in the general case of q> * 0 an extreme-calculation 
can only be made with such spirals. However, in the equilibrium-method the calcu
lations will be simpler with circular rupture-lines, and in many cases, especially 
for line-ruptures, the actual rupture-lines must be circles (when incompressibili
ty is assumed and the elastic deformations are disregarded). In fact, it is neces
sary to use circles in order to determine the location of the rotation centre for 
the wall.

Therefore, the next step is to consider an equilibrium-calculation in which 
the rupture-line is composed of one or more circles (or straight lines). When the 
same boundary condition is used as for the spiral, this must lead to very nearly 
the same results as those obtained with a single spiral rupture-line, simply be
cause the two rupture-lines usually deviate only very slightly from each other.

That the calculated earth pressure is not influenced very much by reasonab
ly small deviations from the actual rupture-line can be seen, for example, from 
this fact: The active earth pressure on a rough vertical wall, as calculated by 
means of Coulomb’s method with a straight rupture-line, differs only by a few 
percent from the actual value, although the actual rupture-line is composed of a 
straight and a curved part.

In Hotter’s equation and the author’s boundary condition we have now the 
means of carrying out an equilibrium-calculation for a rupture-line of any shape. 
However, as already mentioned, it is preferable to use rupture-lines composed of 
circles (and straight lines), as this gives the simplest calculations, is suffi
ciently correct and often necessary for kinematical reasons.
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17. Short Review of Contents

After the general introduction, given in the present Section 1. the known 
methods of calculation are described in greater detail in Section 2. First, in 
Section 21, the extreme-methods of Coulomb, Fellenius and Rendulic are consider
ed. Next, in Section 22, the theories of plasticity are dealt with, embracing the 
theoretical solutions of Rankine and Prandtl, the boundary-methods of Frontard 
and Jaky as well as Ohde’s equilibrium-method and the Limit Analysis of Drucker, 
Hodge and Prager. In Section 23, some theories of elasticity are mentioned, viz. 
the methods of Rifaat and Bretting. Finally, in Section 24, some empirical me
thods are considered, viz. those of Christiani, the Danish Rules, Tschebotarioff 
and Rowe.

In Section 3, the theoretical basis of the author's new method is developed. 
Section 31 states the basic assumptions and main principles. In Section 32 some 
geometrical formulae together with formulae for surcharges and earth weights are 
given. Next, in Section 33, formulae are developed for the internal stresses and 
their resultants in circular and straight rupture-lines. The boundary conditions 
are developed in Section 34 for ground surfaces, walls and internal boundaries. 
Further, in Section 35, a number of rupture-figures are analysed, including line- 
ruptures, zone-ruptures and some composite ruptures. In Section 36, the possible 
states of failure are discussed, both those occurring in earth pressure investi
gations of single and composite structures, and those envisaged in stability in
vestigations. Finally, in Section 37, it is indicated how the soil constants 
should be determined, and a proposal for the introduction of suitable safety fac
tors is given.

Section 4 deals with the general methods for calculating the earth press
ures corresponding to different figures of rupture. The general principles are 
described in Section 41. In Section 42, line-ruptures are investigated, and in 
Section 43, zone-ruptures. Different types of composite ruptures are dealt with 
in Sections 44, 45 and 46. Finally, in Section 47, a tentative proposal is made 
for determining the approximate distribution of the calculated earth pressures.

Section 5 considers the problem of determining the earth pressure on a 
rigid vertical wall, rotating about any given point. The ground surface is as
sumed horizontal. Three simple special cases are investigated, viz. frictionless 
earth, weightless earth and cohesionless, unloaded earth. After an introduction 
in Section 51 zone-ruptures are investigated in Section 52, line-ruptures in Sec
tion 53 and different composite ruptures in Sections 54 , 55 , 56 , 57 and 58. At 
first only two friction angles are considered, viz. 0° and 30°, but in Section 
59, it is shown how the results can be applied, approximately, to other friction 
angles. In Section 5 a number of photographs are reproduced, indicating the re
sults of model tests made by the author.

In Section 6, some more complicated cases are considered. Section 61 shows 
how the general case of heavy earth with surcharge, cohesion and internal fric
tion can be treated approximately by superposition of the individual cases. Sec
tion 62 deals with the effect of water pressures, both hydrostatic and hydrody
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namic. Section 63 treats different cases of layered or stratified earth, for 
which simplified approximate calculation methods are proposed. Further, Section 
64 deals with cohesive earth, in which part of the earth front can stand unsup
ported while the wall moves away from it. Finally, in Section 65, sloping sur
faces and inclined walls are investigated.

In Section 7. the new method is applied to a number of practical earth 
pressure problems. Different design methods are developed and several numerical 
examples are given. Section 71 deals with retaining walls, Section 72 with anchor 
slabs, Section 73 with free sheet walls. Section 74 with anchored sheet walls, 
Section 75 with fixed sheet walls and, finally, Section 76 with braced walls in 
cuts, and with unyielding walls.

Section 8 deals with some stability and foundation problems. In Section 81, 
the new method is applied to the stability of cellular cofferdams on rock, and, 
in Section 82, to cellular cofferdams in earth, or double sheet walls. Finally, 
Section 83 indicates some other possible applications, viz. regarding the deter
mination of anchor lengths, the stability of slopes, and strip foundations.

In Section 9. the new method and its applications are reviewed. The neces
sity of comparing its results with experiments and practical experience is stress
ed, and a few general comparisons are made. Lastly, the author’s original contri
butions to the subject of earth pressure calculation are listed, and the most im
portant of the still unsolved problems are mentioned.

Finally, the present book contains an Appendix, including a list of nota
tions and sign rules, an Ehglish and a Danish Summary, a list of references and 
an Index. Moreover, the Appendix contains 5 tables, by means of which a compara
tively easy application of Kotter’s equation is made possible, and 20 graphs, by 
the aid of which it is possible to calculate the earth pressure on a vertical 
wall for any given location of the rotation centre.
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21. EXTREME-METHODS

211. Gene ral

A method, in which earth pressure problems are solved by means of a single 
condition of equilibrium in connection with a maximum or minimum condition, shall 
here be termed an extreme-method.

If the problem shall be solved without making additional assumptions, it is 
necessary to choose such rupture-lines that an equation of equilibrium can be 
developed in which the unknown stresses in the rupture-line do not enter. This 
condition is, in the general case of cp + 0, satisfied by the moment equation 
about the pole of a logarithmic spiral, the radius-vectors of which make an angle 
<p with the normals (Rendulic). In the special case of frictionless earth the 
spirals become circles (Fellenius), and in the case of an infinitely distant pole 
straight lines are obtained (Coulomb).

The principle of the extreme-method is now to choose, of all the possible 
rupture-lines, the one for which the earth pressure resultant (determined by 
means of the above-mentioned equilibrium equation) attains an extreme value, i.e., 
a minimum for passive earth pressure and a maximum for active. If this is done 
analytically, the extreme-condition gives as many equations as the number of in
dependent geometrical parameters for the rupture-line. These equations, in com
bination with the above-mentioned equilibrium condition, suffice to determine 
the parameters of the rupture-line and the magnitude of the earth pressure, pro
vided that the direction of the earth pressure resultant as well as the location 
of its pressure centre are known. In the special case of a straight rupture-line 
(Coulomb) it is not necessary to know the location of the pressure centre.

212. Coulomb’s Method

The principle of this method is the following: We consider an earth wedge 
bounded by the surface, the wall and a straight rupture-line through the foot of 
the wall. All forces acting upon this wedge are projected on a line making an 
angle <p with the rupture-line. This gives an equation, from which we can find the 
normal earth pressure component E as a function of the angle 0 between rupture
line and horizon. Differentiating E with respect to 3, and putting the differen-



21. Ex tr erne-Me thods 25

tial quotient equal to zero (according to the extreme-condition) a second equa
tion is obtained which, together with the original equation, suffices to deter
mine 3 and E.

ph cot fi
Pig. 21A shows the case of a 

smooth vertical wall and a horizon
tal ground surface. The surface is 
loaded with a surcharge p per unit 
area, and the height of the wall is 
h. The earth has a unit weight y, a 
friction angle <p and a cohesion c, 
corresponding to Coulomb’s law re
garding the greatest possible value 
of the shearing stress t in a plane 
with the normal stress o:

Fig.21A: Coulomb's method T < C + 0 tan (J> 2101
for a smooth vertical wall

By projection of the acting forces on the dotted line, we get an equation 
which can be written in the following form:

cos cp
E = (4yh2 + ph) cot 3 tan(3+«P) + ch—:— ------——- 2102sin 3 cos(3+<p)

Putting the differential quotient of E with respect to 3 equal to zero, an 
equation is obtained which can only be satisfied when:

cos(23+<P) = 0 or 3 = 45°- 4cp 2103

Inserting 2103 in 2102 the extreme value of the earth pressure is found:

E = (-§yh2+ ph) tan2(450+ t<p) + 2ch tan(45°+ -§q>) 2104

With positive values of <p and 
c we get the passive earth pressure, 
whereas negative values give the 
active pressure.

Fig. 21B shows a case which in 
several ways is more general, be
cause it concerns a sloping ground 
surface and an inclined wall with a 
roughness corresponding to a wall 
friction angle 6. In one way it is 
more special, however, because we 
consider cohesionless earth only. 
Using in principle the same proce
dure as above we can find:

cos (fi-j)

Fig.2lB: Coulomb's method 
for inclined wall and cohesionless earth
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cot(fS-i) = tan(<p+6+i-j) sec(qp+6+i-j) sin(g>+6) cos(6-j) 
sin(<p+i) cos(j-i)

E
A -

•i '«h-C-^r'

+ ph sec cos 6 sec(6-j) cos2(q>+j)

1 -_ \ / sin(cp+6) sin(q?+i) 
V cos(6-j) cos(j-i)

2105

2106

cp and 6 should be assumed positive for passive pressure, negative for ac
tive pressure, i and j should also be inserted with correct signs; in Fig. 21B, 
they are shown positive. Of the double signs in 2106 the upper one should be used 
for passive pressure and the lower for active.

It should be noted that h is measured along the wall, that p is the verti
cal surcharge per unit area of the sloping surface, and that E is the earth press
ure component normal to the wall.

As long as we consider only a rupture-line through the foot of the wall. 
Coulomb’s theory does not provide us with any means of determining the earth 
pressure distribution, not even the location of the pressure centre.

This difficulty is usually overcome by assuming that a rupture-line departs 
from any point of the wall. In that case the developed formulae are valid for any 
depth h smaller than the total height of the wall. This shows that the pressure 
distribution must be “ hydrostatical”, i.e., the p-term in E must correspond to 
a uniform distribution and the y-term to a triangular distribution.

However, it must also be assumed that the stresses in the straight rupture
line are hydrostatically distributed, and this is actually the fact. It will then 
be found that the remaining two conditions of equilibrium for the earth wedge 
cannot be satisfied, except in special cases such as, for example, that of a hori
zontal surface and a smooth vertical wall.

This means that either the earth pressure distribution is not hydrostatical, 
or the rupture-line is not straight, or both. Actually, Coulomb’.s method must be 
considered as an approximate means of calculating a zone-rupture; in this case 
the actual earth pressure distribution is hydrostatical, but the actual rupture
line is usually not straight.

In spite of this theoretical inconsistency, it has been found that active 
earth pressures calculated by means of Coulomb’s method are only a few percent 
smaller than the correct values. On the other hand, passive earth pressures as 
found by Coulomb’s method may exceed the correct values by 50% or more.

Consequently, Coulomb’s method is most suitable in the case of active zone- 
ruptures. Such ruptures occur, for example, in the backfill of retaining walls, 
and for these structures the method is, therefore, a very reliable means of de
sign and calculation.

For line-ruptures Coulomb’s method cannot be used at all, because the loca
tion of the pressure centre (z) does not enter into the calculation of E.
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213. Fellenlus’ Method

When applied to frictionless earth, the principle of this method is the 
following: We consider an earth wedge bounded by the surface, the wall and a cir
cular rupture-line through the foot of the wall (Fig.21C). The moments of all 
forces acting upon this wedge are taken 
about the centre of the circle. Provided 
that the location of the pressure centre is 
known, this gives an equation, from which 
we can find the earth pressure E as a func
tion of the geometrical parameters a and 3 
of the circle. Putting the differential 
quotients of E, with regard to a and 3 
respectively, equal to zero,two additional 
equations are obtained which, together with 
the original equation, suffice to deter
mine a, 3 and E.

Fig.21C illustrates the case of a 
smooth vertical wall and a horizontal 
ground surface. It is easy to show that, 
when <p « 0, the earth pressure is the sum 
of a “ hydrostatical” component and a com
ponent which is proportional to ch, so that 
we can write:

E = -§yh2 + ph + chx 2107

Fig.21C: Fellenius' method 
for frictionless earth

In order to determine x we consider the case y = 0, p = 0. By taking the 
moments of the acting forces about the centre of the circle the unknown normal 
stresses in the circle are eliminated, and we find:

a (1 + cot"a)(l + cot 8) 
cot a cot 3 + 1 - 2C 2108

Differentiating 2108 partially with regard to a and 8 respectively, and 
putting the differential quotients equal to zero, we get the following equations:

a cot 0(1 + cot a) = (2a cot a - l)(cot a cot 8 + 1 

cot a (1 + cot23) ■ 2 cot 8 (cot a cot 8 + 1 * 20

20 2109

2110

When £ is known, 2109-10 can be solved by trial, for example by estimating 
a value of a, finding the corresponding 8 from 2109 and investigating whether 
2110 is satisfied. If not, a must be changed until satisfactory agreement is ob
tained. When a and 8 have been determined, 2108 gives x, and 2107 yields then E. 
c should be assumed positive for passive pressure, negative for active pressure.
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Fellenius himself did not give his method quite as general a form as de- 
scribed above. He put, arbitrarily, C = i and found then a = 15°, 0 = 47. 5° and 
k = 1.916. This he considered a better approximation than the value k = 2, which 
is found by means of a straight rupture-line (using 2104 with cp = 0).

However, if Fellenius’ method is considered as an approximate means of cal
culating a zone-rupture, then the last term in 2107 corresponds evidently to a 
uniform distribution, and one must put C = ?. This would give a = 0°, 0 = 45° and 
k = 2 in agreement with 2104.

On the other hand, Fellenius’ method may be considered as an excellent means 
of calculating a line-rupture. In that case his calculation is correct but con
cerns only the special case of C * t, or (from a kinematical point of view),
£ = 2.21, as the location of the rotation centre of the wall is determined by the 
following equation (see Fig. 21C):

2111

This gives the method a much wider application than realized by Fellenius 
himself, as it enables the determination of the earth pressure and the location 
of the pressure centre, corresponding to any given location of the rotation centre 
of the wall. That this is so can be seen from the fact that, with a given £, the 
four equations 2108-11 allow the determination of the four unknown quantities a,
0, k and C.

Apart from the determination of the pressure centre the earth pressure dis
tribution cannot be determined by means of the described method.

Fellenius used circular rupture-lines also in the case of q? * 0, but as it 
is necessary in this case to make additional, more or less arbitrary assumptions, 
the method is not a pure extreme-method any longer.

214. Rendulic’s Method

This method may be considered as an extension of Fellenius’ to the case of 
cp * 0. As rupture-lines, logarithmic spirals are used, with an angle <p between 
the radius-vectors and the normals. This implies that, apart from a possible co

hesion c, the resulting stress on

directed towards the pole of the 
spiral, so that only the cohesion 
gives any moment about the pole.

each element of the rupture-line is

The theoretical principle of 
the method is now the following: We 
consider an earth wedge bounded by 
the surface, the wall and a spiral
rupture-line through the foot of the

Fig.21D: Rendulic's method 
for earth with internal friction

wall (Fig.21D). The moments of all 
forces acting upon this wedge are 
taken about the pole of the spiral
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Provided that the location of the pressure centre is known this gives an equation, 
from which we can find the earth pressure E as a function of two geometrical pa
rameters of the spiral. Putting the partial differential quotients of E, with re
spect to these parameters, equal to zero, two additional equations are obtained 
which, together with the original equation, suffice to determine the two para
meters and E.

However, an analytical calculation as described would become rather compli
cated. Therefore, only the original moment equation is used in its analytical 
form to determine the value of E corresponding to any estimated position of the 
spiral, and with a fixed location of the pressure centre. The critical spiral, 
i.e., the one making E a maximum (active pressure) or a minimum (passive press
ure), is then found by trial.

Rendulic himself carried out his calculations in a slightly different way, 
but the principles were essentially the same and the results exactly the same.
He considered in great detail the special case of a smooth vertical wall, cohe
sionless earth with <p = 30° and a horizontal, unloaded surface. Apart from rup
ture-lines consisting of a single spiral he also investigated composite rupture
lines consisting of a logarithmic spiral and a straight line meeting at some 
point of the wall.

In this way Rendulic succeeded, as the first, in determining the complete 
relationship between the magnitude of the earth pressure (E) and the location of 
its pressure centre (z). He found a curve resembling closely the one marked 
“ smooth” on Graph 13 in the Appendix.

Further, he tried to determine the rotation centre of the wall, correspond
ing to any given critical spiral. In order to do this he had to make certain as
sumptions, and as a result of these he deduced the following rule: The rotation 
centre is the point where the wall is intersected by a straight line through the 
pole parallel to the direction of the earth pressure resultant (Fig.21D).

However, if we assume incompressibility of the earth, the above result can
not be correct. In this case the actual rupture-line must be a circle which, in 
Rendulic’s method, is approximated by a logarithmic spiral. The actual rotation 
centre must be the normal projection of the centre of the circle on the wall, 
and this point will only in special cases coincide with the point determined by 
Rendulic’s rule. Consequently, the location of the rotation centre can actually 
not be determined by means of Rendulic’s method.

Finally, Rendulic also tried to determine the distribution of the earth 
pressure. To this end he assumed that a spiral rupture-line must depart from any 
point of the wall and that, therefore, his relation between E and z should be 
valid for any depth smaller than the total height of the wall. This enabled him 
to determine pressure diagrams which bear a marked resemblance to the tentative 
pressure diagrams proposed by the author (Section 473).

However, Rendulic was apparently not aware that also his pressure diagrams 
are merely tentative approximations, since in a line-rupture only one rupture
line meets the wall. Consequently, the pressure distribution is in principle in
determinable.
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22. THEORIES OF PLASTICITY

221. General

Theories of plasticity are based on the assumption that a state of failure 
exists at any point within a certain area (zone-ruptures) or on a certain curve 
(line-ruptures). By means of this assumption, in connection with the equations 
of equilibrium, it is in principle possible to solve earth pressure problems.

In the case of plane strain Coulomb’s law is usually accepted as the con
dition of failure:

t = c + a tan cp 2201

A rupture-line is defined as a line in which x and a satisfy the relation 
2201. In all other lines x is smaller than the function of a indicated by the 
right side of 2201.

The variation of the stres
ses in different lines through a 
point may be illustrated by means 
of Mohr’s circle (Fig.22A). From 
this it can be seen that two dif
ferent rupture-lines (correspond
ing to points M and N on the cir
cle) pass through each point, 
making angles of 90° t tp with 
each other. The lines of princi
pal stresses (corresponding to 
points A and B) bisect the angles 
between the rupture-lines.

Fig. 22A also shows that, if 
ox, oy and are the stresses 
in any pair of orthogonal lines 

(corresponding to points X and Y), the failure condition 2201 can be expressed as 
follows:

(ox'°y)2 + 4Txy = [*°x+<V sin !p + 2c cos <p] 2 2202x1

Fig.22A: Mohr’s circle for stresses

Using an orthogonal coordinate system with a horizontal X-axis and a verti
cal Y-axis (positive downwards), the equations of equilibrium for an infinitely 
small earth element are:

dx
3xv+__M.
9y

30y 9x
3y 3x Y 2203-04 ,]
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In principle, the 3 equations 2202-04, together with the necessary stati
cal boundary conditions, suffice to determine the 3 stresses ox, oy and xxy at 
any point where failure occurs. This determination of the stresses is thus possi
ble without any investigation of the deformations. However, this does not mean 
that arbitrary deformations can be associated with the calculated stresses.

Instead of the 3 unknown stresses we can introduce 2 other variables, viz., 
the resulting stress t = o sec <p in the rupture-line (exclusive of the cohesion 
c),and the angle v between rupture-line and horizon. By means of Pig. 22A we find:

°x o. (r c J
= (t sec <p + c tan <p) t (t tan <p + c sec <p) sin(2v+<j>) 2205 V

°y

Txy = (t tan <p + c sec <p) cos(2v+<p) 2206 V

As 2205-06 satisfy 2202, we have the 2 equations 2203-04 for the determi
nation of t and v. By different transformations the following equation can be 
derived:

3t 3v"t + 2 (t tan <p + c sec <p) tt- 3s ds Y sin(v+cp) = 0 2207

and a similar one for the other rupture-line, s is the arch length of the rup
ture-line in question.

In the special case of cohesionless earth (c =0), equation 2207 is re
duced to the following, which is known as Kotter’s equation:

3t 3v-T— + 2t tan <p — + 3s 3s Y sin(v+q>) = 0 2208 V

In the other special case of frictionless earth (q> = 0) equation 2207 
yields:

—■ + 2c + y sin v = 0 2209 -J3s 3s

In the present work any of the 3 equations 2207-09 will be referred to as 
KBtter’s equation.

In two special cases it is possible to indicate simple, exact solutions of 
the equations 2202-04, viz., by assuming straight rupture-lines (Rankine) or by 
considering frictionless or weightless earth (Prandtl).

KBtter’s equation can be utilized in two different ways. In the special 
cases of weightless or frictionless earth it is possible to integrate 2207 with
out knowing the actual shape of the rupture-line. This enables the solution of 
some earth pressure problems by means of Kotter’s equation and the boundary con
ditions alone, without any investigation of the equilibrium of the earth mass 
above the rupture-line. Such methods shall be termed boundary-methods (Frontard, 
Jåky).
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If the general shape of the rupture-line is known, as is the case for line- 
ruptures, Kfitter’s equation, in combination with a boundary condition at one end, 
enables the determination of the stresses in the rupture-line. An earth pressure 
calculation can then be carried out by means of the 3 equilibrium conditions for 
the earth mass above the rupture-line. Such methods shall be termed equilibrium- 
methods (Ohde and the author).

222. Rankine’s Solution

Rankine (1857) considered the case of a semi-infinite cohesionless earth 
mass with a sloping surface making an angle i with the horizon. He assumed the 
whole earth mass to be in a state of failure and could then show that the rup
ture-figure consists of two systems of straight parallel lines, intersecting each 
other at angles of 90° ± <P.

That straight rupture-lines are a possible solution can be seen from 2207, 
which is satisfied when v = constant and:

K °
t = y(s’-s) sin(v+cp) + t’ 2210 7

v can be determined by the condition that the resulting stress on a verti
cal line must be parallel to the surface. Conversely, the resulting stress on a 
line parallel to the surface must be vertical.

Analytically, Rankine’s solution for the case p = 0, c = 0 can be express
ed by means of the following equations, where d is the vertical depth below the 
surface:

r\
ax = ydK2 ay = yd( 1+K2tan2i) = ydK2tan i 2211-13 (" P

The constant K is determined by:

K sec <p + V sec <p sec x 2214

The upper sign is valid for the passive state, the lower for the active.
As dd = dy = - dx • tan i, it is easy to ascertain that the equations 2211-14 
satisfy the equilibrium conditions 2203-04 as well as the failure condition 2202.

In employing the Rankine theory it is usually assumed that the presence of 
a wall does not alter the stresses in the earth. This implies, however, that only 
in special cases will the resulting stress on the wall have the exact direction 
consistent with the actual roughness of the wall. This is the most serious short
coming in the Rankine theory.

In the special case of a horizontal surface and a smooth vertical wall the 
same (correct) result is obtained as by means of Coulomb’s theory. The correspond
ing figures of rupture are shown in Pig. 22B (the active state left, the passive 
right).
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Actually, Rankine-zones oc
cur in practically all cases of 
zone-ruptures, viz. near the 
ground surface. Another Rankine- 
zone will occur near the wall ex
cept when it is perfectly rough 
(6 = q>), but between these two 
zones the Rankine state is gene
rally not possible. Fig.22B: Active and passive Rankine-zones

223. Prandtr s Solution

Prandtl (1920 and 1927) considered the case of a sector-shaped zone of 
weightless earth (y = 0). He found that in this case the rupture-figure consists 
of a system of straight lines through the apex and a system of logarithmic spir
als with the apex as their pole.

For y - 0, equation 2207 requires t = constant when v = constant, which 
shows that in weightless earth the stress is constant along any of the straight 
rupture-lines. The variation of t along a spiral rupture-line is found by inte
gration of 2207:

t = (f—£—) e2(v' "v) tan * !_
sin <9 sin cp 2215

In this case a polar coordinate system is the most suitable. The equations 
of equilibrium for a small earth element will then be:

3o y. 3x rvr —- + —— + a - o„ - yr cos v = 0 3r 3v r v 2216 v

3x 3orv +__v
3r 3v

2t. yr sin v = 0 2217 ✓

The failure condition is expressed by an equation such as 2202, when ox, 
Oy and Tjy are substituted by ar, av and x^.

In the case of y = 0, c = 0, Prandtl’s solution can be expressed by means 
of the following equations, where p = tan <p :

3r = K(l+2p )e-2pv = Ke-2pv v _2^vTrv = Kue 2218-20

The constant K must be determined by the boundary conditions. The passive 
state is obtained with a positive u, the active with a negative p. It is easy to 
ascertain that the equations 2218-20 satisfy the equilibrium conditions 2216-17 
as well as the failure condition (corresponding to 2202).
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In the special case of frictionless earth (<p = 0), the problem can also be 
solved when y 0, c + 0. The rupture-lines are then concentric circles and 
straight lines through the centre, and the stresses are:

t = or = av = K0 - 2vc + yr cos v xrv = c 2221-22

Prandtl-zones seldom occur alone, but often in combination with Rankine- 
zones. The apex is usually located at some singular point such as, for example, 
the point where the ground surface meets the wall. When the wall is perfectly 
rough, the Prandtl-zone may touch the wall in its entire length. As an example, 
the figures of rupture for the special case of a horizontal surface and a rough 
vertical wall are shown in Pig.22C (the active state left, the passive right).

Fig.22C: Active and passive Prandtl-zones in weightless earth

In the general case of y + 0, q? =4= 0, no exact mathematical solution can be 
indicated, but approximate solutions can be obtained in different ways (v.Kårman 
1926 and Ohde 1938).

224. Boundary-Methods

The characteristic feature of a boundary-method is the use of Kotter’s 
equation in connection with the boundary conditions at both ends of the rupture
line, whereas the equilibrium of the earth mass above the rupture-line is not in
vestigated.

The statically correct boundary conditions for the general case shall not 
be given here, but are developed in Sections 342-43. It can be mentioned, however, 
that a rupture-line should intersect a perfectly smooth boundary at an angle of 
45° I iq> and a perfectly rough boundary at an angle of 90° t qp, the sign depend
ing on the direction of the shear stress in the rupture-line . The corresponding 
relations between the stress t in the rupture-line and the external normal stress 
ps (smooth boundary) or p (rough boundary) are:

t’ = ps tan(45° t i<p) 1 c 2223 i

Ps * (t” T c) cot(45° t iq>) Pr = t”cos qp 2224-25 1

Pig.22D illustrates an earth pressure calculation by means of the boundary- 
method, concerning the case of passive earth pressure against a rough, inclined
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wall. The earth is frictionless and has a horizontal surface loaded with a ver
tical surcharge p.

According to the above-mentioned 
boundary conditions, we must have, for
<?> = 0:

v’ = 45° ■ -|n 2226 'f

t’ = p + c 2227 V

V* = j e = t” 2228-29V

If we now insert these two sets of 
values separately in 2221, substituting 
r cos v by the vertical depth d, we get two 
equations, from which K0 can be eliminated. 
This gives the following expression for the 
unit earth pressure normal to the wall:

e = yd + p + c (1 + in -2j) 22307

In this case the boundary method yields the correct result in spite of the 
fact that the equilibrium of the earth mass above the rupture-line has not been 
investigated. Serious errors may be introduced, however, when the boundary condi
tions are not quite clear, or when the method is used in the general case of
Y + 0, <p + 0.

Frontard (1922 and 1948) in
vestigated a slope, making an angle 
i with the horizon, in a friction
less material (Fig.22E). He assumed 
that the rupture-line must make 
angles of 45° with the upper surface 
and the inclined slope respectively.
This gives, using 2 223 - 24 with
V = 0 :

v’ = 45°= in V = - c v” = i - 45°= i - in t” = c 2231-34 ,/

When these two sets of values are inserted separately in 2221, substituting 
r cos v by d and changing the sign of c, two equations are obtained, from which 
K0 can be eliminated. This leads to the following formula for the critical height 
of the slope:

Fig.22E: Boundary-calculation 
for slopes in frictionless earth

P

Fig.22D: Boundary-calculation 
for pressure of frictionless earth

d = y (2 + ti - 2i) 2235 y/

Whereas this formula is correct for i -» 0, it gives for i = t71 (vertical 
bank) only about half the height obtained by a “ <p = 0”-analysis (Fellenius).
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This must be due to the arbitrary choice of v”. Actually, at a singular point, 
such as the foot of the slope, no definite value can be assigned to v”.

Jaky (1936) made a similar mistake when he investigated slopes in a mate
rial with internal friction. In this case it is necessary to know the shape and 
position of the rupture-line in order to use Kotter’s equation. Jaky assumed 
a circular rupture-line, intersecting the upper surface and the inclined slope 
at the statically correct angles. By means of Kotter’s equation and the boundary 
conditions alone he then developed a formula for the critical height of the slope. 
However, its value is very problematical, as an investigation of the earth mass 
above the rupture-circle (which Jaky did not carry out) will show that the condi
tions of equilibrium are usually far from being fulfilled.

2 2 5. Equi 1 ibriurn-Hethods

The characteristic feature of an equilibrium-method is that the unknown 
quantities are determined by means of the 3 conditions of equilibrium for the 
earth mass above the rupture-line, without the aid of any extreme-conditions. The 
general shape of the rupture-line must be known (or approximated), and the neces
sary determination of the stresses in the rupture-line is effected by means of 
Kotter’s equation and a boundary condition.

As a typical example we shall consi
der Ohde’ s calculation (1938) of the active 
earth pressure on a vertical wall rotating 
about its upper edge. The earth is assumed 
cohesionless and the surface horizontal and 
unloaded (Pig. 22P).

Ohde first showed that the assumed 
movement of the wall excludes the existence 
of a zone-rupture behind the wall. Conse
quently, only a single rupture-line can 
occur, and this must be a circle, when the 
elastic deformations are disregarded and 
incompressibility is assumed. Moreover, the 
centre of this circle must be located at a 
normal to the wall through the rotation 
centre in order to enable the earth wedge 
to follow the movement of the rigid wall.

For a circular rupture-line it is easy to integrate Kotter’s equation, put
ting ds = r dv and assuming r = constant. By means of further integrations the 
resultant of the stresses in the whole rupture-circle can be determined or, rather, 
its vertical component V, horizontal component H and moment about the centre 
of the circle. Such formulae are developed in Section 33.

However, all these formulae contain an unknown stress t’ (e. g. at the 
ground surface), which must be determined by a boundary condition. In the case

F sec i

Fig.22F: Equilibriim-calculation 

for cohesionless unloaded earth
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considered by Ohde this condition is simple and obvious: when p = 0 and c - 0, 
we must have t’ = 0 at the surface.

The only unknown quantities in the problem are the following 3 : the cen
tral angle (2a) of the circle, the normal component (E) of the earth pressure, 
and the height (z) of the pressure centre above the foot of the wall. For their 
determination we have the following 3 equations of equilibrium for the earth 
mass above the rupture-line:

(V - G) cos 6 - H sin 6=0 E - H 2236-37 \f

E (h - z) = M° + m£ + E tan 6 • h cot 2a 2238

From 2236 the angle a can be found, then E from 2237 and, finally, z from 
2238. It is, however, impossible to determine the actual distribution of the 
earth pressure by means of this method.

After having carried out the calculation as described, Ohde tried to deter
mine the earth pressure distribution empirically as a simple curve. He assumed, 
however, that the pressure curve could have no point of contraflexure, and on 
this (wrong) assumption he found it impossible to make the stresses at the lowest 
points of the wall and the rupture-line agree. As a result he rejected Hotter’s 
equation as a basis for his calculation and substituted it by an empirical press
ure distribution involving certain constants which had to be determined by ex
treme-conditions. The calculation thereby became considerably more complicated, 
and actually less accurate than his original calculation by means of Hotter’s 
equation.

In the general case of p 4= 0, c =t= 0 an equilibrium-calculation is confront
ed by the difficulty that a unique boundary condition can only be indicated when 
the rupture-line meets the boundary at the statically correct angle (see Section 
224). In most line-ruptures this will not be the case, and consequently the equi
librium-method in its existing form cannot be used.

In the present work, the author has solved this problem by establishing a 
connection between the equilibrium-method and the extreme-method, by means of 
which a general application of the equilibrium-method has been made possible.
The new method,of which a detailed account is given in Section 3, is essentially 
an equilibrium-method, although in some cases it employs the principles of the . 
boundary-method, too. ^

226. Limit Analysis

A special theory of plasticity has recently been developed by Drucker 
and Prager (1951) under the name of “Limit Analysis”, and they have also attempt
ed to apply it to earth pressure problems.

They define first a statically admissible stress field by the conditions 
that it should satisfy the equilibrium equations and the yield inequality at any 
point, as well as the statical boundary conditions.
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Further, they define a kinematically admissible velocity field by the con
ditions that it should satisfy the kinematical boundary conditions and, at any 
point, the equation:

6i + e2 = enn sin <j> 2239

where Ej + e2 represents the rate of dilatation and enn the rate of maximum 
shear strain.

In order to calculate earth pressures by means of this method it is necessa
ry to assume a fixed distribution of the earth pressure. If any statically ad
missible stress field can be indicated, the corresponding value of the earth 
pressure is an approximation which is somewhat on the safe side. On the other 
hand, if any kinematically admissible velocity field can be indicated, the cor
responding value of the earth pressure is an approximation which is somewhat on 
the unsafe side.

In this way it is theoretically possible to find the limits of an interval, 
within which the actual value of the earth pressure must lie. However, statically 
admissible stress fields can only be indicated in very special cases, so that one 
usually has to be content with kinematically admissible velocity fields. Of such 
fields one must, of course, try to find one which is as little as possible on the 
unsafe side.

One consequence of 2239 is that, if a thin plastic layer between two paral
lel lines is subjected to shear, the lower line remaining in a fixed position, 
then the velocity vectors of points at the upper line must make angles of <p with 
the corresponding tangents of the line.

Now, Drucker and Prager consider the rupture-line in a line-rupture as a 
narrow plastic zone. Then, the only way in which the rotating rigid earth wedge 
can satisfy the above requirement, is by being bounded by a logarithmic spiral 
and rotating about its pole. In this way Drucker and Prager arrive at a velocity 
field which, according to 2239, is kinematically admissible.

The calculation of the corresponding earth pressure must now take place in 
the same way as in Rendulic’s method, making use of the moment equation about the 
pole and the extreme-principle (in order to find the value which is as little as 
possible on the unsafe side).

It will be seen that, according to Drucker and Prager, the rotation centre 
of the wall coincides with the normal projection of the pole of the spiral on the 
wall.

With regard to 2239, it must first be remarked that, according to tests, it 
is, at the most, fulfilled for a certain porosity of the earth. Even if the earth 
happens to possess this porosity, so that 2239 is correct in the initial state of 
failure, it cannot be so when failure progresses, because the earth obviously can
not go on dilating indefinitely. When the shear strain has reached a certain va
lue, the rate of dilatation must be zero.

In a line-rupture, the plastic zone is actually exceedingly narrow, which 
means that even small movements of the earth wedge will produce very great shear
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strains in the narrow plastic zone. Moreover, the failure is actually progressive, 
starting from the foot of the wall. By the time it has reached the surface, the 
shear strains in practically the whole rupture-line will have become so great 
that 2239 cannot possibly be valid any longer. Instead of this, incompressibility 
must be assumed in the narrow plastic zone, which means that the rupture-line 
must be a circle instead of a spiral.

23. THEORIES OF ELASTICITY

231. General

Theories of elasticity are based on Hooke’s law, assuming proportionality 
between deformations and stresses. By means of this assumption, in connection with 
the equations of equilibrium for a small earth element, it is in principle possible 
to solve earth pressure problems by considering the earth as a perfectly elastic 
medium.

However, as general solutions of the equations cannot be indicated, and as 
the boundary conditions are usually extremely complicated, exact calculations of 
this type have not, generally speaking, been carried out.

The only exception is Boussinesq’s solution (1885) of the problem concerning 
the effects of a concentrated force acting on the surface of a semi-infinite 
elastic solid. This method has, later, been applied by Weiskopf (1945) to the 
problem of determining the earth pressure^ due to a concentrated surcharge, on 
an unyielding wall. 3DCE’, ASC£j Voi "6 % 5 PP- 2,71

By making various simplifying assumptions it is possible to develop approxi
mate theories of elasticity. As regards foundation pressures, the most common me
thod of this kind is the method of subgrade reaction, which assumes proportionali
ty between the unit normal pressure at any given point of a structure and the 
normal deflection of this point. A great number of applications, mainly concerning 
foundation problems, have been indicated by Hayashi (1921), whereas Rifaat (1935) 
and Blum (1951) have used the method on lateral earth pressure problems.

An interesting example of another type of approximate elasticity theories 
is the method developed by Bretting for the calculation of flexible sheet walls 
in clay. This method has never been published in full, but a short account of it 
has been given by the author (Brinch Hansen 1948).

The most serious shortcoming of the theories of elasticity is, that although 
they may approximately determine the actual stresses in the soil, they cannot give 
any indication of the safety against ultimate failure.
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232. Methods of Subgrade Reaction

As an example of such methods we shall discuss the work of Rifaat (1935). 
He considers a vertical, free sheet wall, driven into cohesionless earth with a 
horizontal surface, and subjected to an exterior horizontal force.

The active earth pressures are disregarded, and the passive pressures are 
defined by the equation: e = By, where y is the horizontal deflection, and B is 
a function of the depth x. If the wall is elastic with a moment of inertia J and 
a modulus of elasticity E, we get then the following differential equation:

2301

which can be solved when B is given as a function of x. Rifaat investigated dif
ferent possibilities and found, by comparison with model tests, that the best 
agreement was obtained by assuming B proportional to the depth x. The arbitrary 
constants in the solution of 2301 are, of course, determined by the boundary con
ditions.

Unfortunately, this method cannot be applied to active earth pressures, 
because in this case a very small deflection usually suffices to develop the mi
nimum value of the pressure, so that proportionality between deflections and 
pressures no longer exists, not even approximately.

233. Bretting’s Method

| Pd* As shown in Fig. 23A, Bretting consi
ders a vertical, anchored sheet wall in
clay with a horizontal surface. He assumes 
the lines of maximum shear stress to be in
clined at 45° at both sides of the wall,
which is assumed perfectly smooth. More
over, he assumes that the movements of all 
soil particles are parallel to these lines.

We consider now an earth element be
tween two consecutive shear lines. From 
Fig.23A it will be seen that the movement 
in the lower line is dy • \f2 greater than 
that in the upper line. As the distance be
tween the lines is dx : \[2, the increase of 
a former right angle will be:

Fig.23A: Bretting’s method 
for anchored sheet walls in clay.

dy • V2~ dy t_
dx : \f2 dx " " G 2302 V
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where G is the modulus of elasticity for shear, and x is positive when directed 
as in Pig. 23A . Equation 2302 presumes, of course, that no shear stresses existed 
in the clay prior to the deflection of the wall.

Next, we project all forces acting upon the considered earth element on the 
direction of the shear lines. In this way the following expression for the unit 
earth pressure is obtained:

e = yx + p - 2t - 2x -r— 2303dx
(wiik tfc

Combining this with the usual relation 230l'and eliminating x by means of PC
2302, we get the following differential equation in y:

d4y d2y dyEJ —"r - 4Gx —t - 4G - yx - p = 0 2304dx dx dx

This equation is valid above dredge-line level. Below this level a similar 
procedure can be used, giving the equation:

d4y d2y dyEJ —f - 4G (2x-h0) —4 - 8G - yh0 - P = 0 2305dx dx dx

The equations 2304-05 can only be solved approximately and either graphic
ally or analytically, e. g., by expressing y as a polynomium in x. A full solution 
of the problem can, of course, only be obtained with the aid of the boundary con
ditions. of which altogether 8 are necessary. A further discussion of these 
would, however, lead too far here.

The theory described has, in a slightly different form, been used by Bret- 
ting for the design of a big quay wall in Bangkok, built by Christiani & Nielsen 
in 1940-41. Very reasonable results were obtained in this case, although various 
objections can be raised against the theory (Tschebotarioff 1949 and 1951).

24. EMPIRICAL METHODS

241. General

The empirical methods for calculating earth pressures are based either on 
model tests (Tschebotarioff, Rowe), on full-scale tests (Spilker, Peck), or on 
general practical experience (Christiani, Danish Rules). Such methods must be cha
racterized as semi-empirical, which are based on assumptions involving empirical 
constants, which can only be determined by comparing the results with practical 
experience. Examples of the latter are Terzaghi’s "General Wedge Theory” (1941) 
as well as his calculation method for cellular cofferdams (1944).

A common feature of the empirical methods is, that such a method is usual
ly applicable only to constructions and conditions similar to those on which the
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method has been based. Ibis limitation is a serious drawback, because there are 
always a considerable number of variables in any earth pressure problem.

Elnpirical calculation methods have been proposed for many different struc
tures. As examples can be mentioned Spilker’s method (1937) for determining the 
pressure of sand on braced walls, Peck’s method (1943) for the corresponding pro
blem in clay, Terzaghi’s method (1944) for investigating the stability of cellu
lar cofferdams and Rimstad’s method (1940) for designing double sheet walls.

Of special interest are the empirical methods for the design of anchored 
sheet walls. Several such methods exist and four of them shall be described here, 
viz., Christiani’s method, the so-called "Danish Rules”, Tschebotarioff’s method 
and Rowe’s method.

242. Christiani’s Method

Up to about 50 years ago, sheet walls were made almost exclusively of tim
ber, and were designed by means of certain empirical rules, which had proved sa
tisfactory in practice.

In the beginning of the present century, increasing water depths were de
manded, and, at the same time, new materials were made available, viz., reinforc
ed concrete and steel sheet piles. The question then arose of how these new types 
of anchored sheet walls were to be designed.

In most countries where such design methods were attempted, the sheet walls 
were considered as vertical beams, subjected to active and passive earth press
ures calculated by means of Coulomb’s or Rankine’s methods. However, when ordina
ry allowable stresses for the materials in question were used, very heavy sheet 
walls were found to be necessary, so that the new materials could not compete 
economically with empirically designed timber sheet walls.

The first to find a practical solution to this problem was the Danish engi
neer, Rud. Christiani. He started by making check computations of a number of 
existing timber sheet walls, according to the above-mentioned method. He thereby 
found nominal stresses in the timber, which were 3-4 times as great as the allow
able stresses normally used. He concluded then that some redistribution of the 
earth pressures must take place, making the actual moments considerably smaller 
than the calculated ones, and he assumed, finally, that the same would apply to 
sheet walls of steel or reinforced concrete. Therefore, he decided to design 
such sheet walls for the calculated moments, but with “allowable” stresses 3-4 
times as great as those ordinarily used.

The first structure, which was designed and constructed by Christiani & 
Nielsen in accordance with this principle, was a pier at Aalborg, Denmark, built 
in 1906. It consists of two sheet walls of reinforced concrete, anchored together 
and with sand fill in between. The structure proved to be cheaper than a corres
ponding timber structure and, although the sheet walls are underdesigned accord
ing to recent investigations (Tschebotarioff 1951), the pier still stands after 
47 years of satisfactory service.
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The success of this “daring experiment” (Tschebotarioff) enabled Christi- 
ani & Nielsen to carry out a considerable number of quay walls with sheet walls 
of reinforced concrete. Such structures were first made in Denmark and northern 
Europe, and later, all over the world. Gradually the firm developed a light and 
very economical type of wharf structure known as the “C&N-wharf”. A description 
of this development has been given by the author (Brinch Hansen 1946).

After Christiani’s introduction of the empirical calculation principle de
scribed above, other Danish engineers tried to solve the same problem in a dif
ferent way, viz., by changing the earth pressure distribution assumed in Coulomb’s 
theory. This resulted in the empirical method known as the "Danish Rules”..

243. Danish Rules

The Danish Rules for the design of anchored sheet walls in sand were first 
published by the Danish Society of Civil Engineers in 1923. Slightly revised edi
tions appeared in 1937 and 1952. They have been cited by Rimstad (1940), Agatz 
(1943) and Tschebotarioff (1951).

1___

Pig. 24A shows a sheet wall anchored at point 
A. It is assumed simply supported here and at ano
ther point B, located at the pressure centre of the 
passive pressure necessary for equilibrium.

The diagram of the active earth pressure is 
first calculated according to Coulomb’s theory 
(with 6a= 0), but is then modified by means of a 
parabola, decreasing the pressure in the middle of 
AB by an amount q and increasing the pressure at A 
by 1.5 q. The pressure q is given by the formula:

q = 10 H + 2L 
10 H + 3 L Pm 2401

where L is the length AB, Pm is an average value 
of the unit active Coulomb pressure, whereas H re
presents the load above anchor level (measured as 
the corresponding height of earth with submerged 
unit weight). Finally, k is given by a complicated 
empirical formula but is approximately equal to

Fi g.24A: The Danish Rules
for anchored sheet walls in sand. Assuming simple supports at A and B the cor-

responding reactions and maximum moments are cal
culated. The wall and the anchors are then designed with allowable stresses which 
are 25% higher than usual. The theoretically necessary driving depth d is deter
mined by the condition that the passive earth pressure, calculated according to 
Coulomb’s theory (with 6/>=-|(P). should equal the reaction B. The actual driving 
depth should then be d*\[2, corresponding to a nominal safety factor of 2.
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This method was based on the study of a considerable number of existing 
sheet walls. Although of a purely empirical nature and open to considerable doubt 
as regards the assumed pressure distribution (Tschebotarioff 1949), this method 
has proved very satisfactory in practice, having enabled the construction of a 
great number of sufficiently safe and very economic structures (Brinch Hansen 
1946).

244. Tschebotarioff's Method

Some of the most careful and comprehensive model tests ever made with an
chored, flexible sheet walls were carried out by Tschebotarioff (1948, 1949,
1951) at Princeton University. In most of these tests the backfill was deposited 
successively and no dredging took place in front of the wall. As a result of his 
tests Tschebotarioff proposed the following design method for sand:

A driving depth D = 0. 43 H is selected (Fig.24B), and under this condition 
a hinge (zero moment) is assumed at dredge-line level. Consequently, the wall is 
calculated as a beam, simply supported at this level and at anchor level. The 
active earth pressure is determined by the formula:

eh = -bhf”’(l -t^t) ♦ tPs 2402

where y is the unit weight of the fill and pg the unit surcharge, while the sig
nificance of H, h and a, will be apparent from Fig. 24B. The coefficient f’” ex
presses the effect of wall friction and can be put equal to 0.9, whereas f’ is

intended to account for capillarity and the effect 
of passive earth pressures above anchor level. 
Tschebotarioff recommends putting f’ = 3. 5.

P.

Fig.24B: Tschebotarioff's method 
for anchored sheet walls in sand.

The wall is designed for the calculated maxi
mum moment with allowable stresses 33% higher than 
usual. For the anchors no such increase is allowed 
and they should, moreover, not be designed for the 
reaction A found by the calculation but for a great
er force A’ determined by:

— =-f"(l --2-) 
A’ v Hf 2403

where f’1 

1.0.

is a coefficient which must not exceed

For the case of a backfill of soft clay, de
posited in a semi-fluid state, Tschebotarioff has 
indicated a similar design method. He uses, in the 
main, a factor 0.5 for the active pressure, where
as for the passive pressure he employs the method 
indicated by Skempton (1946).
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245. Rowe’s Method

Another remarkable series of tests with flexible, anchored sheet walls has 
recently been carried out by P. W. Rowe (1952), who has studied the influence of 
surcharge, anchor level, anchor yield, dredge level, pile flexibility and soil 
density (only cohesionless soils were used).

For yielding anchors Rowe, as did Tschebotarioff, finds in the main the 
Coulomb distribution of the active pressure, but with increasing flexibility the 
moments (and, to a smaller degree, the anchor pull) are reduced considerably, 
which Rowe attributes mainly to a rise of the resultant of the passive pressure.

Rowe finds the relative moment reduction to be a function of the “ flexi
bility number” h* : EJ and the density of the soil. On this he bases his proposed 
design method, of which the main features are the following.

The calculation is started according to the method of “ free earth support” 
(Blum 1931) with the ordinary Coulomb pressure diagrams. For the active pressure 

= ftp is assumed, and for the passive pressure 6^ = 0 in combination with a 
safety factor 1.5. At the foot of the wall a horizontal shear force is assumed 
to act. corresponding to the vertical load on the wall times tan 6&.

The calculated maximum moment is now used to draw a moment-flexibility 
curve. For the considered type of wall a “structural” curve is also drawn, in
dicating the relation between the flexibility and the allowable moments (for 
steel a stress of 1250 kg/cm2 is used). The design is then based on the point of 
intersection between these two curves.

The calculated anchor pull is first reduced on account of the flexibility 
of the wall, but is then increased again to allow for differential yield. These 
two corrections usually cancel each other approximately.

In the case of a non-yielding anchorage Rowe proposes, according to Stroyer 
(1935), to multiply the calculated maximum moment by a reduction factor:

_Mr = —2Xa_ 2404
Mo 1 +

before making the further reduction for flexibility.

For yielding anchors, Rowe’s method is probably the best empirical method 
proposed so far, but for unyielding anchors its combination with Stroyer’s re
duction factor does not seem quite satisfactory.
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31. ASSUMPTIONS AND PRINCIPLES 

311. Basic Assumptions

The earth may consist of gravel, sand, silt, clay or any other material en
countered in the foundation technique (except solid rock). Also such materials as, 
for example, grain, cement, coal and ore may be included in the general term 
“earth”. The essential requirement is that the material obeys Coulomb’s law, at 
least approximately. This law states that a shearing stress x, to which corresponds 
a normal stress o, is limited by the condition:

x4c + uc = c+ o tan cp 3101

where c (the cohesion) and <p (the angle of internal friction) are assumed to be 
constants for the material in question.

Equation 3101 is principally valid for dry earth. For moist or submerged 
earth the total normal stress will consist of a so-called neutral pressure uw 
in the pore water and an effective stress ae between the soil particles. As the 
shearing resistance is only affected by the effective stress, we must actually 
have:

x ^ ce + oe tan <pe = ee + (°t‘uw^ tan ^e 3102

The constants ce and q>e are called the true cohesion and the true friction 
angle respectively.

We shall now consider two extreme cases. The first concerns fully saturated 
clays. On account of their extremely low permeability, their water content will 
practically be constant during the construction period. This means that they can 
be considered incompressible, and that any change of the total normal stress 
will be taken up exclusively as a change in the neutral pressure uw, leaving the 
effective pressure ae, and consequently also the shear strength, unaltered.

The same result can evidently be obtained by using 3101 with cp = 0 and c 
equal to the shear strength (actually half the undrained compression strength). 
When 3101 is used in this way, the constants c and qp are called the apparent co
hesion and the apparent friction angle respectively. Thus, fully saturated clays 
can be considered as frictionless materials, when we use 3101.
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Actually, this is an approximation only, because, although 3101 and 3102 
may indicate the same shear strength, the angles between the rupture-lines and 
the directions of the principal stresses should actually be 45°t -§q>e (according 
to 3102), whereas 3101 gives 45° for qp = 0. However, in the case of straight rup
ture-lines Skempton (1948) has shown that 3101 will lead to correct values of the 
earth pressures but to wrong positions of the rupture-lines, and the author 
(Brinch Hansen 1952) has shown the same in a case of foundation pressures involv
ing curved rupture-lines.

The other extreme case concerns sand and gravel. These materials are usually 
so highly permeable that the neutral pressures uw at any time can be assumed to 
correspond to the depths below the water table (hydrostatical water pressures) or 
to the hydraulic heads found by a flow net construction (hydrodynamic pressures).

Consequently, when the water pressures and the earth pressures are consider
ed separately, the latter can be calculated on the basis of 3101 with a equal to 
the grain pressure. This implies, however, that for the earth we must reckon with 
the submerged unit weight, i.e., the unit weight of the saturated soil minus the 
hydrostatic uplift. In the case of hydrodynamic water pressures an additional 
correction must be made on account of the hydraulic gradients (see Section 622).

In most cases, c will be negligible for sand and gravel, so that these may 
be termed cohesionless materials. However, a small content of clay may make sand 
somewhat cohesive without reducing the permeability too much. Using 3101 with o 
equal to the grain pressure we have thus for clayey sand a case of c 4 0, <p + 0.

Although equation 3102 might be used as the basis of a plasticity theory, 
as has actually been done by the author (Brinch Hansen 1952), this leads to almost 
insurmountable complications. In order to arrive at comparatively simple results 
it is necessary to use the simpler equation 3101, and, as has been shown above, 
this is actually possible at least in the extreme cases of very low and very high 
permeabilities, corresponding to the important practical cases of fully saturated 
clays, and sand and gravel respectively.

In cases of intermediate permeabilities, such as may exist in mixtures of 
sand and clay, and in silts, it is hardly possible to make any reliable earth 
pressure calculation without investigating, by calculation and experiment, the 
neutral pressures at different times. This may sometimes also be necessary for 
fully saturated clays, viz., when they are consolidating (e. g. in earth dams) or 
swelling (e. g. after excavation of overlying layers). Such cases are usually ex
tremely complicated and shall not be dealt with in the present work. The same 
applies to partially saturated clays. A few indications have been given by Skemp
ton and Bishop (1950).

The earth may be stratified. but within each separate layer it is assumed 
to be homogeneous and isotropic. Actually, these conditions are seldom fulfilled 
in nature, and, particularly for clay, the anisotropic consolidation is probably 
of some importance (Brinch Hansen and Gibson 1949). However, in order to arrive 
at comparatively simple calculations the above assumptions shall be made in the 
present work.
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The shearing stress acting between a structure (here generally called a 
wall) and the earth is, in analogy with Coulomb’s law, assumed to be limited by 
the condition:

f 4 a + e tan 6 3103

where e and f are the normal and tangential components respectively of the unit 
earth pressure, a (the adhesion) cannot exceed c, and 6 (the angle of wall fric
tion) cannot exceed cp. The maximum values of a and 6, which will occur in case 
of a relative tangential movement between wall and earth, are assumed to be con
stants for the wall and earth in question. If no such movement takes place lower 
values of a and 6 can occur.

In the special case a = 0, 6=0 the wall is called perfectly smooth, and 
in the other special case a = c, 6 = <p it is called perfectly rough. Actual walls 
will generally approximate rather closely the latter case, but, nevertheless, it 
Is often preferred to assume the walls to be smooth, this being simpler and usu
ally on the safe side.

With regard to the movements of the wall, it is assumed that these are 
great enough to produce a state of rupture in the earth, but that they, on the 
other hand, are small in comparison with the height of the wall. The wall itself 
may, or may not, be in a state of failure. In the latter case a limited number 
of yield hinges are supposed to develop.

In many cases the movement of the wall in its own plane can be assumed ne
gligible in comparison with its movements perpendicular to this plane. This is 
usually the case when the wall is founded on firm bottom, or on piles, or is 
driven into firm ground. In such cases the wall is said to make "normal” move
ments only (e. g. a normal rotation). In certain other cases (e. g. anchor slabs 
and cellular cofferdams) the tangential movements are not negligible, as the 
wall may be lifted in the state of failure. For perfectly smooth walls this pro
blem is, of course, of no importance.

Elastic deformations of earth or wall are assumed to be small of a higher 
order than the plastic deformations, and these are, as already mentioned, sup
posed to be small of-ar-higher-^rder-'+han the height of the wall.

i »i ytl* tio k fa
One consequence of this is that an elastic earth zone, the interior of 

which is not in the state of failure, can be assumed to move as a rigid body. 
Another consequence is that the wall, in which either no cross section at all, 
or a finite number of sections, are in a plastic state, will move either as one 
rigid body or as a finite number of rigid parts connected by links (yield hinges). 
Each such part rotates in the state of failure about a certain rotation centre.

We shall assume that the earth is incompressible . i. e. that even in a pla
stic zone the volume of the earth does not change through the deformation. This 
assumption is made in most plasticity theories and is very accurate for saturated 
clay, whereas for sand it is only correct after the shear strain has reached a 
certain minimum value. In cases of progressive failure it is a very good approxi
mation, even for sand (see Section 226).
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Actually, we shall generally not consider problems, the solution of which 
requires the exact calculation of the deformations in plastic zones, but mainly 
problems which can be solved either without considering the deformations at all, 
or by qualitative consideration only of the deformations.

In the present work only plane problems shall be considered or, more 
strictly speaking, states of plane strain. In addition, such problems may be 
considered, which, with sufficient accuracy, can be treated as plane (e. g. cel
lular cofferdams).

312. Main Principles

The main principles of the proposed new method for dealing with earth 
pressure problems are, briefly described, the following:

An earth pressure problem involves, generally, a number of given forces 
and dimensions as well as some unknown ones, which should be determined by the 
calculation. Incidentally, unknown dimensions can seldom be determined directly, 
and it is therefore usually necessary to start the calculation with estimated 
values of the unknown dimensions and correct them later if necessary.

In the calculation we shall consider the state of failure. On the other 
hand the structure should , of course, be designed in such a way that there is a 
certain safety against failure. This is achieved by carrying out the calculation, 
not with the actual loads and shear strengths, but with the actual loads multi
plied by certain safety factors, and with the actual shear strengths divided by 
other safety factors.

The first step of the calculation consists in determining or choosing the 
type of movement to be performed by the structure in the state of failure. In 
some cases the movement can be chosen so as to obtain the maximum efficiency 
( example: an anchor slab will resist the greatest possible anchor pull by a 
translation). In other cases the movement is practically given (example: a re
taining wall must tilt forward, rotating about a point below its foot).

For more complicated structures more than one state of failure may be pos
sible (example: an anchored sheet wall may fail, either because the anchorage 
yields, or because the soil in front of its foot yields, or because a yield 
hinge develops in the wall proper). In such cases any one of the possible states 
of failure can be chosen as the basis of the design, it being mainly a matter of 
economy and convenience as to which is preferred.

When the type of movement of the structure in the state of failure has been 
determined, the possible figures of rupture in the adjacent earth masses must be 
investigated. If at all possible, only such figures of rupture should be consider
ed, which imply movements of the earth masses compatible with those of the struc
ture.

The next step is to calculate the earth pressures acting between the struc
ture and the adjacent earth masses. These pressures will depend on the assumed 
rupture-figures in the earth, and they can be calculated if we know the internal 
stresses in the lines of rupture.
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This knowledge is obtained by two different means. First, we use KStter1 s 
equation, which determines the stresses at any point of a curved rupture-line, 
provided that they are known at one point of the line. Second, we use a special 
boundary condition, which is developed in such a way that the most reliable re
sults are obtained (see Section 16).

When the internal stresses in the rupture-lines are known we can calculate 
the earth pressures by means of the statical conditions of equilibrium for the 
different earth zones bounded by rupture-lines, ground surfaces, walls or other 
boundaries. For each separate zone we have, of course, 3 conditions of equili
brium.

Often more than one figure of rupture may satisfy the kinematical condi
tions. The final calculation must then be based on the most critical rupture- 
figure, i.e., the one for which the work done by the earth pressure (acting upon 
the earth) is a minimum.

When the earth pressures on the structure have been determined, we must 
finally consider the equilibrium of the structure proper. This gives another 3 
statical conditions, but in some cases only 2 of these are necessary to solve the 
main problem.

As already mentioned, the original problem will usually present one or more 
unknown quantities. The assumed movement of the structure may involve additional 
unknown quantities (example: the location of the rotation centre for a free sheet 
wall). Finally, the assumed rupture-figures in the earth will add a new set of 
unknown quantities, viz., their geometrical parameters.

If the problem is to be soluble the total number of unknown quantities 
must equal the total number of conditions (statical, kinematical and geometrical). 
However, this can actually be obtained in most practical earth pressure problems.

Example 31a

77 y v .v. ; 7:v ■

Fig.31A: Forces acting upon anchored 
sheet wall and adjacent earth wedges.

In order to demonstrate the application 
of the above-mentioned principles to a practical 
earth pressure problem, we shall consider an an
chored sheet wall (Fig.31A). The wall is assumed 
to be perfectly smooth.

The depth hi-q of the anchor point is 
given as well as the free height ho. The driving 
depth h2 and the anchor force A are unknown quan
tities.

In the state of failure the wall is sup
posed to rotate about the anchor point. This in
volves no additional unknown quantities.

At each side of the wall a single circu
lar rupture-line is assumed to develop in the 
earth. The movements of the rigid wall and the 
two earth wedges (which rotate as rigid bodies 
about the centres of the respective circles) can 
only be compatible, when the centres of both cir
cles are situated at a normal to the wall through
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the anchor point (which is the rotation centre for the wall). This means that each circle in
volves only one unknown parameter, for example its radius r.

As additional unknown quantities we must consider the two earth pressure resultants Ei 
and E2 as well as the heights zi and Zj> of the corresponding pressure centres. This means that 
we have altogether 8 unknown quantities (A, h2. ri, r2. Ej, E2, Zi and z2). However, we have 
also 8 equations, viz., 3 statical equilibrium conditions for each earth wedge and 2 for the 
wall (horizontal projection and moment equation). The third equilibrium condition for the wall 
(vertical projection) has, of course, no importance, when the wall is perfectly smooth.

In practice, we must start the calculation with an estimated value of h2. For each earth 
wedge the 3 equilibrium conditions determine the respective values of r, E and z. We investigate 
then whether the earth pressures on the wall satisfy the moment equation about the anchor point. 
If not, h2 must be changed until this condition is fulfilled. Then, A can be found by horizontal 
projection of the forces acting upon the wall.

32. GEOMETRY AND LOADS

321. Sloping Surface and Inclined Wall

Fig. 32A shows a wall 
with a height h (measured along 
the wall), making an angle j 
with the vertical (pos. in Fig 
32A). The ground surface makes 
an angle i with the horizon 
(pos. in Fig. 32A) and is load
ed with a vertical surcharge p 
per unit area of the sloping 
surface. The unit weight of the 
earth is y.

Further, Fig. 32A shows a 
circular rupture-line through 
the foot of the wall. It has a 
chord length k and cuts off a 
width w of the ground surface 
(measured along this surface).
The central angle of the circle 
is 2a, its radius is r and its
Chord makes an angle 3 with Fig.32A: Surface load and earth weight
the horizon (pos. in Fig.32A). for single rupture-circle.

From Fig. 32A the following geometrical relations may be derived:
\ h - J*_ _ _ —

h cos(j-i) \ ~r =
v/

2 sin a 2 sin a sin(P-i) \
1

= h cos(j-i) 
sin(P-i) 3202.k = 2r sin a
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(,3loJ0
^ = k sin(g-i) _ 2r sin a sin(g-i) 

cos(j-i) cos(j-i)
(3102)

h cos(g-j) = k cos(g-j) _ 2r sin a cos(g-j) 
sin(g-i) cos(j-i) cos(j-i)

3203/

3204 s/

The distance of the rotation centre from the foot of the wall is:

x r cos(g-a-j) k cos(g-a-j) _ h cos(j-i) cos(g-a-j) 
2 sin a 2 sin a sin(g-i)
&UZQ (-iOoO

The total surface load on the earth wedge is:
(sao^)

P = pw = pk cos(g-j) sec(j-i)

3205s/

3206/

and its moment about the middle point of the chord:

Mp = - -§-pk2sin(f3-i) cos(g-j) sec2(j-i) sin j 3207 7

The total earth weight of the wedge bounded by the surface, the wall and 
the rupture-line is:

G = yk2 [gYZ+ t sin(g-i) cos(g-j) sec(j-i)J 3208V

where: GYZ * 7 (a + a cot2a - cot a) 3209 7

The corresponding moment about the middle point of the chord is:

3210 ?

where: MqX = - i (a + a cot2a - cot a) cot a 3211 ?

When the moving earth mass is located on the concave side of the circle 
(as in Pig.32A), the circle is called concave, and when it is located on the con
vex side, the circle is called convex. All the above formulae are valid for a 
concave circle when positive values of a and r are used. They are valid for a 
convex circle when negative values of a and r are used.

For a straight rupture-line the above formulae are valid with a = 0. With 
this value 3209 yields GYZ = 0 and 3211 gives M^x - - J

In order to facilitate the practical use of the above formulae the quanti
ties G^2 and M^x, which are functions of a only, have been evaluated in Table 1U
in the Appendix.

When the rupture-line consists of more than one circle (Fig.32B), the pre
ceding formulae are valid for Plt P2 etc. and Gt, G2, etc. For the remaining 
loads and their moments about the middle points of the respective chords the 
following general formulae may be developed:

Mr - yk M<(xsisin + n sin sin(g-i)cos(g-j) 
12 cos(j-i) cos p + 2 sin(P-i)sin j 

cos(j-i)
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3212-13 J

3214-15y

322. Horizontal Surface and Vertical »all

We shall here consider a very important special case, viz., a horizontal 
surface (i = 0) and a vertical wall (j =0). Inserting these values in the pre
ceding formulae we get first the following geometrical relations:

k
2 sin a

h
2 sin a sin P

om)
k = 2r sin a = ,h 

sin P
0 V

3216- 17

dm')
h = k sin P = 2r sin a sin P

Y?
w = h cot P = k cos p = 2r sin a cos P (S2C>H}

x = r cos(p-a) = = i-h (1 + cot a cot p)£* sin ®

For the surface load and the earth weight respectively we find: 

P = pk cos P Mp = 0

G = yks(GYz + | sin 2P) = yk3 (M^sin P + h sin3P)

3218 i

3219 y

3220 si

3221-22/ 

3223-24 V
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Gyz and MYX are still given by 3209 and 3211.

For a rupture-line consisting of more than one circle we find in the case 
of i = 0, j = 0:

pmn = Pmwn MPmn 0 Gmn Ymhmwn MGmn = 0 3225-28 /

33. STRESSES IN RUPTURE - CIRCLE

331. General Case

We consider an infinitely small earth element 
coordinates r and v. the latter being measured from 
of all forces (the indicated stresses multiplied by 
lengths) on the radius and the tangent respectively 
obtained:

(Fig.33A) and use the polar 
the vertical. By projection 
the corresponding side- 
the following equations are

30r Qtj-y
r----- + ------  + a_ - a„ - yr cos v * 0

3r 3v r v
3301 V

3x rv
3r

3av
3v 2-c rv yr sin v = 0 3302 V

r dr dv

Fig.33A: Small earth element in rupture-circle

We shall now investigate the 
stresses in a rupture-circle with 
its centre in the pole of the co
ordinate system. Inserting the 
stresses a_ and Xpy in Coulomb’s 
law (3101) we find:

x^ - tiOr $ c 3303 \l

The function indicated on the 
left side of 3303 must have a con
stant value in the rupture-line 
proper and, as regards the varia
tion in the radial direction, it 
must either be constant (zone-rup
ture) or attain a maximum value at 
the rupture-line (line-rupture).
In both cases we have:

9(Trv ~ Pqr>
3r

3(xry - uor) 
3v

3304-05 s]
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Multiplying 3301 with u = tan <p, subtracting it from 3302 and using 3304,
we get:

3 (a -(it ) v rv
3v + u(ov-or) + 2xrv + yr sec v sin(v+<p) * 0 3306 \/

For the sake of simplicity we 
shall in the following omit the sub
scripts on the stresses a and t in 
the rupture-line proper. For the other 
normal stress we get by means of 
Mohr’s circle (Fig.33B):

oy = a + 2(rt 3307 7

Fig.33B: Mohr's circle for stresses

dx

Using 3305 and 3307 to elimi
nate the normal stresses from 3306, 
we find the following differential 
equation in x alone, valid for the 
rupture-line proper:

— + 2(ix + yr sin <p sin(v+<p) = 0 dv 3308 y
This is K6tier’s equation for the variation of the shear stress in a rup

ture-line. Hotter (1903) derived it for cohesionless earth, and Jaky (1936) show
ed that it is also valid for earth with cohesion.

The solution of 3308 is, for r = constant (circle):

-2uvx = Ke + yr sin <p cos y cos(v+<p+v|<)

where K is a constant stress and y a constant angle defined by:

y * arc tan 2u or tan y ■ 2 tan <p

If v’ and x’ are corresponding values, then 3309 gives:

2uv’ r 7K = e x’ - yr sin v cos y cos(v’+q>+v)l

3309

3310 V

3311 y

Instead of the stresses a and x in the rupture-line we shall now introduce 
the cohesion c and the remaining stress t which makes an angle q> with the normal. 
From Mohr’s circle (Fig. 33B) it will be seen that:

a = t cos q> x = c + t sin <?> 3312-13 V

!
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v'-fi**

Fig.33C: Resultants of stresses in rupture-circle

We consider now a rupture- 
circle with a radius r, a chord- 
length k, a central angle 2a and an 
angle 3 between chord and horizon 
(Fig.33C). The point at which the 
boundary stresses are known is call
ed the starting point (’) and the 
other end the finishing point (” ).
3 should be assumed positive when 
the starting point is located 
above the finishing point , i.e. 
when the chord falls towards the 
wall. We have then:

v’ = 3 + a 3314 V

v” = 3 - a 3315 ■/

Using 3309 for the finishing 
point, inserting K from 3311, elimi
nating t’ and t” by means of 3313 
and, finally, using 3314-15, we get 
for the stress t”:

where:

t” = yr cos v [cos(3-a+<p+v) - v cos(3+a+cp+\p)J + vt’ +

4 pa

c(v-l) 
sin cp

v = e

r-

Introducing k instead of r by means of 3201 we find:
k

t” - yk (tYXsin 3 + t^cos 3) + (t’ + ——) t1 - —
sin cp sin cp

t 4iiawhere: t = e = v

^yx = cos >p 
2 sin

— sin(>p+cp+a) - sin(>p+cp-a)J

Yv cos w r ~i-t = ——. v cos(>p+<p+a) - cos(vp+cp-a)2 sin a L J

3316 /

3317 yj

3318 y

3319 sj

3320 yj

3321 V

Next, we shall determine the resultants of the stresses acting in the rup
ture-circle on the moving earth mass outside this circle (Fig.33C). On each ele
ment rdv of the circle acts a shear stress t, given by 3309, and a normal stress 
a, which can be found by means of Mohr’s circle (Fig. 33B):

a = (x-c) cot cp 3322 I 

Hie resulting force in a direction making an angle g with the vertical is:
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RS f v\ [jj cos(v+g) - T sin(v+g)l r dv 3323

Eliminating o by means of 3322, inserting x from 3309, carrying out the 
integration, inserting K from 3311, eliminating x’ by means of 3313 and, finally, 
using 3314-15, we can find:

Rg = -|Yr2cos2>|/ £sin(2\|/-g) + 2a sec y cos(y-g) - v sin(2a+2y-g)

+ sin(2p+2<p+g) [v - sec v cos(2a-i|/)]J

+ (t’ + ——) r cos v f sin(p+a+<p-\p+g) - v sin(p-a+qp-w+g)l sin qp L J

- 2cr cot q> sin a cosO+g) 3324

The vertical component V is obtained with g = 0, and the horizontal compo
nent H with g = - 90°. If, at the same time, r is substituted by k by means of 
3201, we get:

V = yk2 [ VYZ + VYXsin(2P+2<p)i] - ck cot <p cos p
+ (t’ + —t~—) k f Vtxsin P + Vtycos pi 

sin qp L J

H * yk2 [ HYZ + HYycos(2P+2cp)J - ck cot <p sin p 

+ (f + ) k [Htxsin P + Htycos P^

containing the following functions of a and cp:

_ytx = yty = cos ^ fv cos(w-<p+a) - cos(w-<p-a)l 
2 sin a L J

yty = Htx = C°S — fv sin(\y-<p+a) - sin(>y-<P-a)l 
2 sin a L J

-HYy = Vyx = C°S o fv ” sec V cos(\|r-2a)l 
8 sin2a L J

2

yyz _ cos ^ [sin 2\|/ - v sin(2\p+2a) + 2al 
8 sm2a L J

2

Hyz =, cos fcos 2y - v cos(2y+2a) - 2a tan yl 
8 sin5« L J

The moment about the centre of the circle is:

,v’■«-$ x r dv

3325

3326

3327

3328

3329

3330

3331

3332 \J
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Inserting x from 3309, carrying out the integration, inserting K from 3311, 
eliminating x’ by means of 3313 and, finally, using 3314-15, we can find:

Mr = yr3cos ip |^2 sin <p sin a cos(P+qp+\p) - t(v-1) cos cp cos(P+a+cp+\p7|

+ (t’ + —A—) |t2 (v-1) cos cp 3333 7
sin cp v

The moment about the middle of the chord is (Pig. 33C):

Mr = Mr + r9° ^ r cos “ 3334 7

Inserting 3333 and 3324 (with g = 90°-P) in 3334, and, at the same time, 
introducing k instead of r by means of 3201, we get:

Mr = Yk3(MRX sin p + M^cos p) + (t’+ ) k2M^ 3335

containing the following functions of a and qp:

Mr
t cos \p cot a

4 sin a
^cos(ip-cp-a) - v cos(\p-qp+a) + ?(v-l) cos cp sec \p sec aj 3336

vx cos \p cot a T„ . . . . . .Md = ——-------- 2a cos \p - 4 sin cp sin(\p+cp) tan aK 16 sin2a L
+ sin 2cp cos(\p-2a) + cos \p sin 2\p
- sin(ip+<p+a) [2v cos \p cos(\p-cp+a) - (v-1) cos cp sec ajj 3337

yy cos <p cot a TMu = ————----- 2a sin <p + 4 sin cp cos(cp+<p) tan aK 16 sin2a L
- cos 2cp cos(\p-2a) - cos \p cos 2\p
+ cos(>p+cp+a) Qiv cos \p cos(\p-cp+a) - (v-1) cos cp sec ajj 3338

From Figs. 33A and 33C it will be seen that x is assumed positive when, 
acting upon the moving earth mass outside the rupture-line, it is directed from 
the starting point (’) towards the finishing point (”), i. e., towards the foot 
of the wall. The corresponding pressure in the rupture-line is called passive, 
whereas the pressure corresponding to a negative x is called active.

Noting also the previously indicated sign rules for a and P it will be 
found that the preceding formulae are valid in all cases if:

c, cp, \p and pi are assumed positive for passive pressure, 
c, cp, ip and u are assumed negative for active pressure, 
a and r are assumed positive for a concave circle, 
a and r are assumed negative for a convex circle,
P is assumed positive, when the chord falls towards the wall,
P is assumed negative, when the chord rises towards the walL.

In order to facilitate the practical use of the above formulae, the quan
tities tt, tyx, try, Vtx. vty, H**, Hty, V*x. VYZ, H*y, Hyz, Mt. M*x and M^y,
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which are functions of <p and a only, have been evaluated for cp = i 30° and 
- 90°« a « + 90° in the Tables 2a-b and 3a-b in the Appendix.

It should be noted that the superscripts x, y and z respectively denote 
that the multiplier is a sine-function, a cosine-function,and a constant (=1) re
spectively. Further, the argument of the function is usually (3 itself, only for 
VYX and H1^ is the argument 2P+2<p.

For a straight rupture-line (a-*0) the following formulae can be derived:

t” - Yk sin(P+<p) + t’ 3339

Rg = TYk2sin(P+<p) cos(p+(p+g) + kt’ cos(P+<p+g) - ck sin(p+g) 3340

V = iYk2sin(20+2<p) + kt’cos(P+cp) - ck sin p 3341

H - #Yk2sin2 (P+<p) + kt’ sin(P+<p) + ck cos P 3342

Mr = r5Yk3cos <j> sin(P+<p) 3343

As usual, <p and c should be assumed positive for passive pressure and ne
gative for active pressure.

332. Frictionless Earth

In the special case of frictionless earth (<p = 0), we have:

Trv - T - c or = oy '= o = t 3344-45 y

With these values 3306 yields:

— + 2c + Yr sin v = 0 3346 ]/dv

For r = constant (circle) the solution is:

a = K0- 2cv + Yr cos v 3347 /

If v’ and o’ are corresponding values we get:

K0 = o’ + 2cv’ - Yr cos v’ 3348 V

Using 3347 for the finishing point of the rupture-circle (Fig.33C), insert
ing K0 from 3348 and, finally, using 3314-15, we get for the stress a”:

o” = 2yr sin a sin p + 4ac + o’ 3349 \/

Introducing k instead of r by means of 3201 we find:
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o” = yk sin 0 + ctc + a’ where: tc = 4a 3350-51 /

Next, we shall determine the resultants of the stresses acting in the rup
ture-circle (Fig. 33C) on the earth above this circle. On each element rdv of the 
circle acts a shear stress x = c and a normal stress a, given by 3347.

The resulting force in a direction making an angle g with the vertical can 
be found by means of 3323. Inserting x *= c and a from 3347, carrying out the in
tegration, inserting K0 from 3348 and, finally, using 3314-15, we can find:

Rg = £yr2 [4 sin2a sin 0 cos(0+g) + (2a - sin 2a) cos gj

+ 2rc [sin a sin(0+g) - 2a sin(0-a+gf] + 2ro’sin a cos(0+g) 3352 V

The vertical component V is obtained with g » 0, and the horizontal compo
nent H with g = -90°. If, at the same time, r is substituted by k by means of
3201, we get:

V = yk2(VYZ+-i sin 20) + ck (Vcxsin 0 + Vcycos 0) + ko’cos 0 3353

H = TYk2sin20 + ck (Hcxsin 0 + Hcycos 0) + ko’ sin 0 3354

where: VYZ = \ (a + a cot2a - cot a) = GYZ 3355

-V°x = Hcy = 2a cot a - 1 V°y = Hcx = 2a 3356-57

The moment about the centre of the circle is given by 3332 which, with 
x = c, and using 3314-15, yields:

= 2acr2 3358 V

The moment about the middle of the chord can be found by means of 3334. 
Inserting 3358 and 3352 (with g = 9O°-0) and, at the same time, introducing k 
instead of r by means of 3201, we get:

% = ykaMYXsin 0 + ck2iw£ 3359 V

where: = t (a - a cot2a + cot a) 3360 <J

Mp[x = t (a + a cot2a - cot a) cot a = -M^(x 3361 -J

The preceding formulae are valid in all cases, if only:

c is assumed positive for passive pressure, 
c is assumed negative for active pressure, 
a and r are assumed positive for a concave circle, 
a and r are assumed negative for a convex circle,
0 is assumed positive, when the chord falls towards the wall,
0 is assumed negative, when the chord rises towards the wall.
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In order to facilitate the practical use of the above formulae the quanti
ties tc, VYZ, \a. Vcy, Hcx, Hcy, and M^x, which are functions of a only, have 
been evaluated for -90°< a < +90° in Table 1 in the Appendix.

For a straight rupture-line the formulae 3339-43 can be used with <p = 0 
and t = a.

34. BOUNDARY CONDITIONS 

341. General Principle

A boundary is a line separating two mediums with different physical pro
perties. As examples may be mentioned the surface of a structure, a free or load
ed earth surface, and an internal boundary between two layers of different earth.

Whenever a rupture-line intersects a boundary it will be found that the 
statical equilibrium conditions at the point of intersection cannot be fully sa
tisfied, unless the angle between rupture-line and boundary has a certain defi
nite value, or unless all stresses vanish at this point.

It is possible, and even probable, that the figures of rupture actually 
developing in nature will have such a composition that they satisfy fully the 
boundary conditions. However, in order to do this they must, in most cases, be 
rather complicated and, therefore, unsuitable for practical calculation.

From a practical point of view it will generally be necessary to consider 
the simplest type of rupture-figure compatible with the movement of the struc
ture. But, as this figure will usually not satisfy all the statical boundary con
ditions, the following question arises: Which relation should be assumed to exist 
between the stresses at both sides of a boundary in order to obtain the closest 
agreement between calculation and experience?

In order to answer this question we shall make use of the well-known fact 
that extreme-calculations of slopes by means of simple rupture-lines (circles 
for cp = 0 and logarithmic spirals for <t * 0) actually yield very reliable re
sults, in spite of the fact that the critical rupture-lines do not intersect the 
boundaries at the statically correct angles.

Correspondingly, we shall assume that the most reliable results are ob
tained when we base our equilibrium calculation on such a boundary condition, 
that it leads to the same results as an ordinary extreme-calculation in cases 
where the extreme-calculation can be carried out at all.

Fig. 34A is supposed to show the result of an equilibrium-calculation, 
carried out by means of Hotter’s equation and a certain (but so far unknown) 
relation between the stresses at both sides of a boundary. The earth surface 
may have any shape, and the loading may consist of forces of any kind and act
ing in any direction.

In the general case we would have to use logarithmic spirals as rupture
lines in an extreme-calculation. We assume, therefore, that we have also used
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Fig.34A: Critical spiral in equilibrium-calculation

them in our equilibrium-calculation, and that, as a result of the latter calcu
lation, we have found the full-drawn spiral in Pig. 34A. In that case the re
sultant Rt of the oblique stresses t in the rupture-line is in equilibrium with 
the resultant Rc+p of the cohesive stresses c in the rupture-line and all other 
forces acting upon the earth above the rupture-line. As R^. must go through the 
pole, the same applies to Rc+p.

It should be noted that in an equilibrium-calculation we consider the state 
of failure, which means that we operate with a nominal safety factor of 1. The 
actual safety is introduced by multiplying the loads and dividing the soil con
stants with suitable factors before the proper calculation is made.

We shall now investigate under what conditions the full-drawn spiral may 
a : ,, also be the critical spiral found by an extreme-calculation. As is known, the
v \ critical spiral is the one for which the ratio between the overturning and the

stabilizing moments about the pole has a maximum value. Moreover, as the nominal 
safety factor is 1, this maximum value should be equal to 1.

This means that, for the critical spiral, the overturning and the stabiliz
ing moments are numerically equal, so that the total moment, about the pole of 
the spiral, of all forces acting upon the earth mass above the spiral, is zero. 
Further, the extreme-condition is satisfied if the same applies to any other 
spiral infinitely near the critical one.

Such a spiral is the dotted one in Pig. 34A. The earth mass above this 
spiral can be divided into four parts, which we shall consider separately.

Firstly, the earth mass above the full-drawn spiral is known to be in equi
librium, so that the forces acting on it give zero moment about any point and 
hence also about the pole of the dotted spiral.
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Next, we consider the nar
row earth band between the two 
spirals and the outermost radius- 
vectors of the full-drawn spiral.
A small element of this band is 
shown in Fig. 34B. If we denote 
the angle between rupture-line 
and horizon by v, and the radius 
of the osculating circle by r, 
the radius-vector of the full- 
drawn spiral will have a length 
r cos <p and will make an angle 
v+<p with the vertical. The cor
responding quantities for the 
dotted spiral are (r+Ar) cos q> 
and (v+Av) + <p.

The three sides of the ele
ment in Fig. 34B are rupture
lines and we know, therefore, 
the directions and magnitudes of 
the stresses acting in them. The 
fourth side (the dotted one) is, 
however, not a rupture-line pro
per, as it makes a small angle 
Av with the direction of the 
rupture-line. Therefore, we do
not know the magnitude of the oblique stress acting in it, but from Mohr’s 
circle (Fig.33B) it will be seen that the angle between the direction of this 
stress and the normal to the section will remain unchanged (= cp) by an infinite
ly small rotation of the section. Consequently, the oblique stress in the 
dotted spiral gives no moment about the pole of this spiral.

The forces acting on the element in Fig. 34B are obtained by multiplying 
the indicated stresses by the corresponding side-lengths. Expressing the fact 
that the total moment of all these forces (including the gravity forces) about 
the pole of the dotted spiral should be zero, we get the following condition:

Fig.34B: Small earth element between spirals

at „-r- + 2pt 9v + 2c sec <p + yr sin(v+cp) = 0 3401

Eliminating t by means of 3313 we find:

— + 2|ix + yr sin <p sin(v+<p) = 0 34029v

Equation 3402 is, in fact, identical with Hotter’s equation 3308, and as 
we actually use this equation as a basis for our equilibrium-calculation, we 
have proved that the moment, about the pole of the dotted spiral, of all forces 
acting upon the considered earth band, is zero.
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All we have left now are the two small triangular elements at the extreme 
ends of the narrow earth band (Pig. 34A). If we can also ascertain that the mo
ment, about the pole of the dotted spiral, of the forces acting on each of these 
elements is zero, then the extreme-condition is completely satisfied, and we 
shall find the same spiral whether we make an equilibrium- or an extreme-calcu
lation.

The forces acting on one of the small triangular elements are the surface 
load p and the stresses c and t in the rupture-lines. The weight of the element 
can be disregarded, as it is small of a higher order than the above-mentioned 
forces. Further, the moment will be zero when the resultant perpendicular to the 
radius-vector is zero. Finally, as the radius-vector is a pseudo-rupture-line, 
we can give the following general rule for obtaining the required boundary con
dition:

We consider a small triangular element between the boundary, the rupture
line and a pseudo-rupture-line. Then the proper boundary condition is obtained 
by expressing that the resultant perpendicular to the pseudo-rupture-line of the 
surface forces acting on the element should be zero.

We have now proved that if we make an equilibrium-calculation by means of 
Kbtter’s equation and boundary conditions obtained as described above, we shall 
find the same spiral as would be found by an extreme-calculation.

The main unknown quantity in the problem (a force, a safety-factor or a 
dimension) is found in the extreme-method by means of the moment equation about 
the pole of the critical spiral. As this equation must also be satisfied in the 
equilibrium-method, it is evident that the same value of the unknown quantity 
will be found in both methods.

342. Stress at Ground Surface

\ We consider first the case 
of a sloping ground surface, mak
ing an angle i with the horizon

earth mass falls from the starting 
point of the rupture-line towards 
the wall. The rupture-line makes 
an angle v’ with the horizon (po
sitive when the rupture-line falls 
from the starting point). Hie

(Fig. 34C). i is assumed positive 
when the surface of the moving

stresses c and t’ act in the rup
ture-line directly below the sur
face. The ground surface is load
ed by a vertical surcharge p per 
unit area of the sloping surface.

\

X

Fig.34C: Small earth element at ground surface
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Pig. 34C shows an infinitely small earth element between the surface, the 
rupture-line and a pseudo-rupture-line. The side-lengths of the element are pro
portional to the sines of the opposite angles. By projection on the two dotted 
lines 1 and 2 respectively, the following equations are obtained:

p sin(v’+cp) + c cos(v’+<p-i) - t’ sin(v’-i) - 0 3403^

p cos v’ + c sin(v’-i) - t’ cos(v’+<p-i) = 0 3404d

These two equations can be satisfied simultaneously only for special values 
of v’, which may be determined by elimination of t’ :

V c cos cp sin i sin(2v’ +<j>-i) ^
+ (p sin <p + c cos cp cos i) cos(2v’ +cp-i) + p sin i = 0 3405 .

Such an equation of the type:
x - V x2+y2-z2

X sin 2u + Y cos 2u + Z = 0 yields: tan u =—=—r---- ------- 3406-07I “ z*
In the special case of cohesionless earth (c - 0) equation 3405 gives:

cos(2v’ +cp-i) = - S1R 1 3408V
sin <p

and, in the case of frictionless earth (<p = 0):

cos (2v’-2i) = - — sin i 3409 V
c

and, finally, in the case of a horizontal surface (i = 0):

v- - 45° - h V ItW? - 3410V

When v’ has been determined in this way, t’ may be found from 3403 or 3404. 
In such cases where 3405 cannot be fulfilled, we must, as explained in Section 
341, use 3403 for the determination of t’. Using also 3314 we find:

_ sin(P+a-Hp) cos(g+oc+cp-i) 
P sin(6+a-i) c sin(g+a-i) 3411/

In the case of frictionless earth (cp = 0), we get:

o’ = p —:sin(6+a)
sin(P+a-i)— + c cot(P+a-i) 3412 v

In the special case of a horizontal surface (i = 0), equations 3411-12 
are reduced to:

sin(P+a+<p) cos(P+a+cp) t’ = p + csin(P+a) sinO+a) 3413 V
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o’ = p + c cot(3+a) 3414

As regards sign rules for c, qp, a and 6, see Section 331 (p.58).

343. Earth Pressure on Wall

Horiion

/

Fig.34D: Small earth element at wall

Next, we shall consider the case of 
an inclined wall, making an angle j with 
the vertical (Pig.34D). j is assumed po
sitive when the moving earth mass is 
overhanging with regard to the wall. The 
rupture-line makes an angle v” with the 
horizon (positive when the rupture-line 
falls towards the finishing point). The 
stresses c and t” act in the rupture-line 
at the wall. Hie stresses between wall 
and earth consist of an adhesion a and an 
oblique stress, which has a normal compo
nent e and makes an angle 6 with the 
normal to the wall, a and 6 are assumed 
positive when the tangential earth press
ure acts downwards on the earth and up
wards on the wall.

Pig. 34D shows an infinitely small 
earth element between the wall, the rup
ture-line and a pseudo-rupture-line. By 
projection on the two dotted lines 1 and 
2 respectively, the following equations 
are obtained:

t” cos(v”-j) + (c+a) sin(v”+qp-j) - e sec 6 cos(v”+q>+6-j) = 0 3415 'J

t” sin(v”+<p-j) + (c-a) cos(v”-j) - e sec 6 sin(v"+6-j) = 0 3416

These two equations can be satisfied simultaneously only for special va
lues of v”, which may be determined by elimination of e:

t sin 6 + c sin <p sin 6 + a cos <p cos 6cos(2v”+q>+6-2j) = ---------------------——:------- -------------------------t sin <p + c

If we make the plausible assumption that:

a tan 6

3417

c tan <p 3418 ^
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which, at least, is correct both for a perfectly smooth wall (a = 0, 6 = 0) and 
for a perfectly rough wall (a = c, 6 = cp), then 3417 is reduced to:

cos(2v”+cp+6-2j) = ~~P 6 3419 J
sin <p

In the special case of cohesion less earth (c = a = 0), equation 3417 is re
duced to 3419, independently of the assumption 3418. In the case of frictionless 
earth (cp = 6 = 0) equation 3417 gives:

cos(2v”-2j) =— 3420'/c

Further, in the case of a perfectly smooth wall (a = 0, 6=0), we find:

vi = 45 - *q> 3421'/

and, finally, in the case of a perfectly rough wall (a = c, 6 = <p), provided 
that a tangential movement takes place between wall and earth:

v” = - <p + j 3422 v/

When v” has been determined in this way, e may be found from 3415 or 3416.
In such cases where 3417 cannot be fulfilled, we must, as explained in Section 
341, use 3415 for the determination of e. Using also 3315 we find:

cos 6 cos(P-a-j) , , „ cos 6 sin((3-a+cp-j)© = * — -—■■■ ■— i...- + (c+a) 1 - — -
cosO-a+cp+6-j) cos(6-a+<p+6-j)

In the case of frictionless earth (cp = 6 = 0) we get:

e = o” + (c+a) tan(6-a-j)

3423 J

3424 V

In the special case of a vertical wall (j = 0), equations 3423-24 are 
reduced to:

,„ cos 6 cos(P-a)
G = L -------------------------cos(6-a+<p+6) + (c+a) cos 6 sin(6-«+<p) 

cosO-a+cp+6) 3425 ■*

e = a” + (c+a) tan(g-a) 3426 v

When the unit normal earth pressure e has been determined, the unit tan
gential earth pressure f can be found by means of equation 3103. f is positive, 
when a and 6 are positive, i. e., when the tangential earth pressure acts down
wards on the earth and upwards On the wall.

As regards sign rules for c, cp, a and (3,see Section 331 (p. 58).
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344. Rupture-Lines Meeting at tall

Fig.34E: Small earth elements at wall

cos (P2+a2+qp2+62-j)
cos 62 cos(p2+a2-j)

Fig. 34E shows two rupture-lines, 
which meet at a wall. All quantities 
in connection with the upper rupture
line are denoted by the subscript 1, 
whereas those connected with the low
er one are given the subscript 2. At 
the meeting point a stress t? acts in 
the upper rupture-line and a stress 
t2 in the lower rupture-line (in addi
tion to the cohesions ct and c2). At 
the meeting point the two rupture
lines make angles of v” and v2 re
spectively with the horizon (both poa 
in Fig. 34E).

Further, Fig. 34E shows an infi
nitely small earth element between the 
wall, the lower rupture-line and a 
pseudo-rupture-line. By projection on 
the two dotted lines 1 and 2 respect
ively, we obtain two equations similar 
to 3415-16 (but with subscripts 2 and 
with ’ instead of ” ). As usual, we 
must use 3415 which, by means of 3314 
with subscripts 2, gives:

(c2+a2) sin(p2+a2+<p2-j)
cos(p2+a2-j) 3427 s/

A comparison with extreme-calculations of composite rupture-figures has 
shown that the correct result, at least for frictionless earth, is obtained by
assuming e to be the same at both sides of the meeting point. Consequently, we
can insert 3423 (with subscripts 1) in 3427. The resulting equation can be sim
plified by putting = - <p2 and ct = - c2. Further, we have usually also
6± = - 62 and at = - a2, viz., when a tangential movement takes place between 
wall and earth at both sides of the meeting point, and in opposite directions. 
Under these circumstances we find:

t> = „ cos(Pi-at-j) cos(P2+a2+cp2+62-j)
2 1 cos(P2+a2-j) cos(P1-a1-q>2-62-j)

+ cos 62 sin(Pi-at+P2+a2-2j)
Cs &2 cos(P2+a2-j) cos(P1-a1-cp2-62-j) 3428
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In the case of frictionless earth (<p = 6 = 0) we get:

o’a = e - (c2+a2) tan(P2+a2-j) 3429

= o” - (c2+a2) [ tanC^-dj-j) + tan(P2+a2-j)] 3430

The formulae for a vertical wall are, of course, obtained with j = 0. For 
a perfectly smooth wall we must put a2 = 0 and 62 = 0, and for a perfectly rough 
wall a2 = c2 and 62 - gp2.

It is possible that the above formulae for rupture-lines meeting at a wall 
are actually valid only for 62 = 62 (e. g., frictionless earth or a perfectly 
smooth wall), because it can be shown that only in this case is it possible to 
carry out an extreme-calculation of the problem.

345. Bnpture-Lioes Meeting in Earth

When two rupture-lines meet inside a homogeneous, isotropic earth mass, 
they must make either an angle 0° with each other (passive or active pressure in 
both lines) or angles 90°t qp with each other (passive pressure in one line and 
active in the other). The stress t is the same in both rupture-lines at their 
point of intersection (t’2 = t”).

This is a consequence of the statical equilibrium conditions for a small 
earth element at the point of intersection, and is also shown by Mohr’s circle 
(Fig.33B). In choosing here to satisfy fully the boundary conditions instead of 
letting the rupture-lines meet at an arbitrary angle and using our special boun
dary condition, we have been guided by the following considerations:

Firstly, an investigation of possible rupture-figures shows, that this 
fixing of the angle between the rupture-lines does not make the rupture-figures 
unduly complicated. In fact, if we did not fix this angle in advance, the rup
ture-figures would involve too many variables.

Secondly, it has been found that an extreme-calculation for a certain com
posite rupture-figure (in frictionless earth), in which the said angle is taken 
as one of the variables, leads to the result that this angle must be 90°, which 
is the statically correct value.

Consequently, we shall usually follow the rule that rupture-lines must 
meet each other at the statically correct angles 0° or 90°1 <p. This does not 
apply, however, to rupture-lines meeting each other at the wall (Section 344).

There is one other possible exception, as pointed out by Prager and Hodge 
(1951). From a purely statical point of view, two rupture-lines may make any 
angle with each other, provided that they meet at a so-called ** line of discon
tinuity”. At both sides of this line there must be the same shear stress in the 
line and the same normal stress perpendicular to the line, whereas the normal 
stresses parallel to the line may be different from each other.
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Horizon

Fig.34F: Line of discontinuity and corresponding Mohr circles

This is illustrated by Pig. 34P, where the common point D of the two Mohr 
circles corresponds to the line of discontinuity D. The radii to this point make 
an angle with each other, which is twice the angle between the rupture-lines
and M2. By means of the triangle DCiC2 we can find:

(ti-t”)2sec2<p = (ti’tan q? + c sec q>)2 + (t’2tan q> + c sec q?)2

- 2 (ti’tan <p + c sec <p)(t2tan q> + c sec q>) cos 20i-oii-g2-a2) 3431

Solving this equation with respect to t2 we get:

t’2 = ti’ + (ti’ + —,C ) 2K (K + V1+K2) 3432sin cp

where: K = u sin(31-a1-32-a2) 3433

For frictionless earth (<p = 0) we can find:

o2 = oj + 2c sin(3i-“i~3a-a2) 3434

Prom a kinematical point of view several objections can be raised against 
a rupture-figure involving one or more lines of stress discontinuity. In spite 
of this, such a figure may be used as a convenient means of approximate calcula
tion, and, as it is "statically admissible”, according to the theory of limit 
analysis, it gives a result which is on the safe side.

346. Internal Boundary

Internal boundaries are lines separating layers of earth with different 
values of one or more of the constants y, q>, c.

Fig. 34G shows an infinitely small earth element, in which the internal 
boundary is a diagonal. The sides of the element are rupture-lines and pseudo
rupture-lines. In the case of the boundary being the upper limit of a capillary 
zone, a capillary pressure pfi may act perpendicularly to the boundary.
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By projection on the two 
dotted lines 1 and 2 two differ
ent equations are obtained. These 
can only be satisfied simultane
ously. when a certain relation 
exists between the angles v2 and 
v” or (in the case of v2 = v" * v) 
when v has a certain value.

If we try to use our spe
cial boundary condition we are 
confronted by the difficulty that 
the two pseudo-rupture-lines in 
Pig. 34G are generally not paral
lel. Therefore, neither of the 
above-mentioned two equations 
can provide the proper boundary 
condition. This difficulty cor
responds to the fact that it is impossible to carry out an extreme-calculation 
of the problem, unless the two rupture-lines are logarithmic spirals with the 
same pole.

Consequently, we can only indicate a proper boundary condition in the spe
cial case of the two pseudo-rupture-lines being parallel, i. e. :

<Pl + $1 - ai = ^2 + ^2 + 3435

In this case we find hy projection on the dotted lines 1 and 2, which are 
now parallel:

t’, = t;
sinQj-at-i)
sin(g2+a2-i) + (Cs-Ct) cos(|32+a2+<p2-i)

sin(g2+a2-i)
sin(g2+a2+q>2-i) 

?c sin(g2+a2-i) 3436

According to the calculation method of Drucker and Prager (see Section 226), 
the rupture-line in a line-rupture must always be composed of logarithmic spirals 
with a common pole. In that case, 3435 is automatically satisfied, which means 
that the problem of stratified earth is always soluble according to this method.

However, when incompressibility of the earth in the rupture-line is assumed 
we must, for kinematical reasons, have v2 = v” = v. In the case of a zone-rupture 
the two equations obtained by projection on the lines 1 and 2 enable the deter
mination of the statically correct angle v and the stress t’2, when ti’ is known.
In the case of a line-rupture v is given, and 3435 shows then that we can only 
indicate a proper boundary condition when q>i = <p2 - <p, i. e., in the case of a 
constant friction angle. In this special case 3436 is reduced to:

t’2 = t” + (C2-Ci)
cos(g2+a2+<p-i) sin(P2+a2+<p-i)
sin(g2+a2-i) sin(P2+a2-i) 3437 x/
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If we have frictionless earth (qp =0) at both sides of the internal bound
ary, we get:

o’t = o? + (cs-c,) cot(02+<*2-i) + Pc

Finally, it will be seen that, if only y changes at the boundary, whereas 
<p and c are constant, we have the same stress at both sides (t\ - t"), unless a 
capillary pressure pc is present.

3 S. FIGURES OF RUPTURE

351. Introduction

A rupture-figure consists generally of a combination of rupture-lines and 
rupture-zones. A rupture-line is a curve, in which the shear and normal stresses 
satisfy the failure condition at any point. A rupture-zone (or a plastic zone) 
is a finite area, in which the failure condition is satisfied at any point. 
Through each point of a rupture-zone pass two rupture-lines, making angles of 
90°i qp with each other. Finally, an elastic zone is an area in which the failure 
condition is not satisfied at any point in the interior, whereas it may be satis
fied at some of the boundaries.

For the sake of simplicity all figures illustrating the present Section 35 
are drawn for the simple case of a vertical wall (j =0), a horizontal ground 
surface (i = 0) and frictionless earth (<p ■ 0).

352. Line-Buptures

The simplest type of rupture is a line-rupture (L-rupture), in which only 
the points at a certain curve are in the state of failure. Such a rupture-line 
may also be considered as an infinitely narrow plastic zone, and when we assume 
constant volume of the earth in the plastic state, the velocity vectors at the 
rupture-line must be tangential to this line.

Outside the rupture-line proper only elastic deformations occur, and as 
these can be disregarded in comparison with the plastic deformations in the rup
ture-line, the elastic zone above the rupture-line must move as a rigid body.
Taken in combination with the required tangential velocity vectors at the rupture
line, this leads to the conclusion that the rupture-line must be a circle or (in 
special cases) a straight line. The elastic zone above the rupture-line rotates 
about the centre of the circle (or translates in the direction of the straight 
line).

We shall distinguish between the following three types of line-ruptures:
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Fig.35A: Line-ruptures

1) Hie concave rupture (rupture A), in which the moving earth mass is lo
cated at the concave side of the circle (Pig. 35A, left).

2) The convex rupture (rupture X), in which the moving earth mass is locat
ed at the convex side of the circle (Fig.35A, right).

3) The straight rupture (rupture S), in which the rupture-line is straight 
It is a special case of both the previous ones and shall, therefore, 
generally not be considered separately (Pig.35A, centre).

The elastic zone above a single rupture-line will be termed an A-zone, an 
X-zone or an S-zone respectively.

353. Zone-Ruptures

A rupture-figure, in which the whole area above the lowest rupture-line is 
in the state of failure, is called a zone-rupture (Z-rupture). We shall here dis
tinguish between two different types of zone-ruptures, which we shall associate 
with the names of Rankine and Prandtl respectively, although these rupture-types 
by their definitions have a considerably wider scope than the special cases 
treated by Rankine and Prandtl:

Fig.35B: Zone-ruptures

1) The Ranki ne- rup tu re (rupture R) is characterized by the fact that the 
rupture-lines at any point have finite curvatures. The rupture-lines 
may be straight, as shown in Fig. 35B (left), but can also be curved.

2) The Prandtl-rupture (rupture P) is characterized by the fact that it 
contains at least one singular point, in the vicinity of which the cur
vature of one set of the rupture-lines approaches infinity. The other 
set of rupture-lines may be straight, as shown in Pig. 35B (right), but 
can also be curved. The rupture-figure shown might be considered as a
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combination of a P-zone and an R-zone, but for the sake of brevity the 
whole figure is termed a P-rupture. The singular point in the rupture- 
figure must coincide with a singular point on the wall, usually the 
point of intersection between the wall and the ground surface.

The lower boundary of a rupture-zone is, usually, a rupture-line and will 
be termed an R-line or a P-line respectively. In most cases the R-lines are 
straight, whereas the P-lines in special cases may be circles (in frictionless 
earth) or logarithmic spirals (in weightless earth). Otherwise these lines are 
curves of unknown shape, but in the present work they will be approximated by a 
suitable combination of circles and straight lines.

354. Composite Ruptures

When a rupture-figure comprises more than one elastic or plastic zone it 
is termed a composite rupture. Of such figures almost an infinity exists and we 
shall, therefore, only consider the simplest types here.

With regard to the boundaries between different zones, it is evident that 
the boundary between two elastic zones must be a rupture-line, if a relative 
movement takes place at all. The boundary between a wall and an elastic earth 
zone is, however, not a proper rupture-line; at least. Rotter’s equation cannot 
be applied to it, as 3304 is not valid here.

The boundary between two plastic zones will usually be a rupture-line or 
an envelope of rupture-lines. However, it can also be a line of constant strain, 
provided that the strain in this line is the same in both zones. Rotter’s equa
tion is probably not applicable to an envelope of rupture-lines.

The boundary between an elastic and a plastic zone is, in most cases, a 
rupture-line or an envelope of rupture-lines. It can, however, also be a line of 
zero strain in the plastic zone. When we assume a constant volume in the plastic 
state, the lines of zero strain will make angles of -|<p with the rupture-lines 
and 90° with each other. In frictionless earth (<p = 0) the rupture-lines proper 
are also lines of zero strain.

When we have two separate zones, each with a rupture-line as a lower 
boundary, the following four combinations are possible:

Fig.35C: Types of composite ruptures
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1) The two rupture-lines are completely separated (indicated by an s be
tween their symbols). There may be passive or active pressure in the 
two lines, independently of each other (Pig.35C, extreme left).

2) The two rupture-lines meet in the earth and are flush with each other 
(indicated by an f between their symbols). There must be either passive 
pressure in both lines, or active pressure in both (Pig. 35C, centre 
left).

3) The two rupture-lines meet in the earth and make an angle 90°i cp with 
each other (indicated by an a between their symbols). There must be 
passive pressure in one line and active pressure in the other (Pig. 35C, 
centre right).

4) The two rupture-lines meet at the wall (indicated by a w between their 
symbols). There must be passive pressure in one line and active pressure 
in the other (Fig. 35C, extreme right).

As in Fig. 35C, the symbol for any composite rupture shall be written in 
such a way that the capital letters indicating the different zones are given, 
starting from the foot of the wall and proceeding upwards towards the surface. 
Between each pair of capital letters a small letter will be placed, indicating 
the type of connection between the corresponding rupture-lines.

Prom one point of view we shall distinguish between s-ruptures, f-ruptures, 
a-ruptures and w-ruptures. From another point of view we shall distinguish be
tween ZZ-ruptures, ZL-ruptures, LZ-ruptures and LL-ruptures, where the first let
ter indicates the type of the lower zone and the second letter the type of the 
upper one. By combination we can get 4 x 4 = 16 different types (LsZ etc.) of / 
composite ruptures with two zones. v

Further, as L may mean either A or X, and as Z may mean either R or P, wen! V v J
have actually 2 x 2 « 16 = 64 imaginable rupture-figures with two zones. However, 
it can be shown that most of these must be rejected as being geometrically, kine
matically or statically impossible.

A figure of rupture is called geometrically possible, if a drawing can be 
made of it. It is called kinematically possible, if the deformations and move
ments implied by it are compatible with each other and with the movements of a 
rigid wall (in which yield hinges may develop). Finally, it is called statically 
possible, if the equations of equilibrium for each of the different finite zones 
can be satisfied.

Of the above-mentioned 64 figures we can at once disregard the 2 x 4 x 2 = 
16 ZZ-ruptures (PsR etc.), as these are either geometrically impossible or iden
tical with the simple Z-ruptures R or P. Further, in a w-rupture the lower line 
must always be of type A; the remaining 3 x 1 x 4 * 12 cases are geometrically 
impossible, but 4 of them have already been rejected as ZZ-ruptures. This leaves 
64 - 16 - 12 + 4 * 40 geometrically possible figures with two zones. Ihese are 
all shown in Figs.35D-E, and we shall now investigate them from a kinematical 
point of view.
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XsR o

XsX ()

Fig.35D: Composite ruptures with 2 zones
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AfR v

PfA +

RaA RaX ^

Fig.35E: Composite ruptures with 2 zones
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In the LsZ- and ZsL-ruptures (AsR etc., RsA etc.) a jump or an angle must 
develop in the earth front. Therefore, these 8 figures are only possible, either 

? when the earth has cohesion (allowing it to stand to a certain height without »
0 lateral support), or when the wall consists of two hinged parts (as in the case/ 

of a sheet wall with a yield hinge).

In the LsL-ruptures (AsA etc.) a jump must develop in the earth front, un
less the upper circle has the wall as a tangent. As jumps are incompatible with 
the movements of a wall, the figures AsA and XsA are kinematically impossible.
For the figures AsX and XsX the same remarks apply as made in connection with 
the ZsL-ruptures.

In the LfL- and LaL-ruptures (AfA etc., AaA etc.) the kinematical compati
bility requires the occurrence of a third rupture-line and, further, that the 
centres of all 3 circles be located at one straight line. Only in that case is 
it possible to make the common circular boundary cover itself by infinitely 
small rotations of the two elastic (rigid) zones about their respective centres.

When two rupture-lines meet at an angle 90°± q>, the shear stresses must 
both be directed either towards or away from the meeting point, and the same 
applies to the movements of the two zones. From this fact it follows that the 
LaL-ruptures (AaA etc.) are kinematically impossible.

In the f-ruptures AfR, AfP and RfA the two zones must move in the same 
direction, but this implies that their common boundary-line should rotate in 
different directions. They are, therefore, kinematically impossible. The same 
applies to PfA, when rA < rp, whereas this rupture is kinematically possible for 
rA > rp. The f-ruptures XfR, XfP, RfX and PfX are all kinematically possible, as 
the common boundary-line can rotate in the same direction, when the two zones 
are moving in the same direction.

In the a-ruptures XaR, XaP, RaX and PaX the two zones must either move in 
different directions, or their common boundary-line must rotate in different 
directions. They are, therefore, kinematically impossible. The a-ruptures AaR, 
AaP, RaA and PaA are all kinematically possible, as the common boundary-line can 
rotate in the same direction.

For the w-ruptures AwA, AwX, AwR and AwP the same remarks apply as made in 
connection with the ZsL-ruptures. However, with the exception of AwA these rup
tures can also occur in cohesionless earth or for a rigid wall without any hinge; 
but in the latter case the centres of the two circles in AwX must be located at 
the same normal to the wall.

Of the 40 geometrically possible figures we have now rejected 13 a^ being 
kinematically impossible (AsA, XsA, AaA, AaX, XaA, XaX, AfR, AfP, R^A, XaR, XaP, 
RaX and PaX). The same applies to 11 more (AsR, AsP, XsR, XsP, RsA, PsA, RsX,
PsX, AsX, XsX and AwA) except in the special cases of earth with cohesion or 
a wall with a yield hinge.

Regarding the remaining 40 - 13 - 11 = 16 kinematically possible figures 
with two zones, a statical investigation, which cannot be given here due to lack 
of space, has shown that at least 5 are statically impossible (XfR, RfX, PfX,
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RaA and PaA). The same seems to apply to 4 others (AfA, AfX, XfA and XfX), al
though the author has not succeeded In proving this definitely.

In the general case we are then left with the following 16 - 5 - 4 = 7 sta
tically and kinematically possible rupture-figures with two zones: XfP, PfA, AaR, 
AaP, AwX, AwR and AwP (underlined in Pig.35E). In addition to these we have, of 
course, the 4 simple figures with one zone: A, X, R and P, as well as more com
plicated rupture-figures.

Some of the rupture-figures actually occurring in nature are found to be 
comparatively simple ruptures with one or two zones as those described above. 
Others, however, prove to be more complicated, involving three or more zones.
Some important examples are shown in Pig. 35P, and most of them will be mentioned 
later in different connections.

AfPfA A wRsA AfAsR AwXfP

RsAsR AaPsA
V

AfX + AwX A aP+ AwXfP

Fig.35F: Composite ruptures with more than 2 zones

The last two ruptures in Pig. 35P are of a special kind. Each of them con
sists of two different rupture-figures superposed upon each other. By the rota
tion of the wall the movements and deformations associated with the two rupture- 
figures will take place simultaneously. This is indicated by a + between their 
respective symbols.

355. Special w-Ruptures

In earth with cohesion a rupture-line need not start from the foot of 
the wall, nor need it reach the ground surface. In fact, it may start from any 
point of the wall (which we shall indicate by a w before its symbol) and may
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end at any higher point of the wall (which we shall indicate by a w after its 
symbol).

This gives us theoretically 3 * 4 = 12 new rupture-figures with a single 
zone. In 8 of these, where the rupture-line ends at the wall, the zone must, how
ever, be an A-zone, so that the remaining 6 figures of this type are geometrical
ly impossible.

The 6 geometrically possible w-ruptures with a single zone (wA, wX, wR, wP, 
Aw and wAw) are shown in Pig. 35G. With the exception of wAw they are also kine
matically and statically possible.

Fig.35G: Special w-ruptures

Also the ordinary composite ruptures with two or more zones can be modified 
in a similar way, but it would lead too far to investigate such ruptures in de
tail here.

w-ruptures can also occur in cohesion less earth, viz., when a yield hinge 
develops in the wall and the lower part of the wall does not move. The lowest 
rupture-line starts then from the yield hinge.

356. Calculation of Rupture-Figures

A rupture-figure will always involve a number of geometrical parameters, 
which should be determined by the calculation. When these parameters are known, 
we can calculate the unit earth pressure at any point where a rupture-line meets 
the wall. We need only start from the surface and use the boundary conditions 
from Section 34, as well as the stress formulae from Section 33.

In a zone-rupture a rupture-line meets the wall at any point, and the earth 
pressure is, therefore, in principle a known function of the geometrical para
meters of the rupture-lines. Consequently, these parameters are the only unknown 
quantities in the problem. Moreover, only the parameters of the lowest rupture
line are usually considered, a simple assumption being made concerning the dis
tribution of the earth pressure on the wall.

For the determination of the unknown quantities, we have the 3 statical 
equilibrium conditions for the whole earth mass above the lowest rupture-line. 
Therefore, a rupture-line must be chosen which involves not more than 3 inde
pendent geometrical parameters. It can be shown, however, that very good approxi
mate results can be obtained by employing a rupture-line with only 1 or 2 inde-
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pendent parameters and, correspondingly, using only 1 or 2 of the equilibrium 
conditions, provided that these conditions are properly selected.

Generally, an infinite number of possible rotation centres for the wall 
correspond to a certain zone-rupture. These centres are located within a certain 
area, the limits of which can be found, theoretically, by an investigation of the 
possible deformations and movements within the plastic zone.

In a line-rupture only one rupture-line meets the wall, and the earth 
pressure distribution is, therefore, in principle, indeterminable. Consequently, 
we must consider the magnitude of the earth pressure, and the location of the 
pressure centre, as 2 unknown quantities, in addition to the geometrical para
meters of the rupture-line.

On the other hand, in addition to the 3 statical equilibrium conditions, 
we have here one other condition specifying, for example, that the rotation 
centre (or the pressure centre) should have a given location. As we have thus 
altogether 4 conditions, and 2 unknown statical quantities, this leaves 2 un
known geometrical parameters for the rupture-line. Fortunately, a single circle 
through the foot of the wall involves exactly 2 such parameters.

In the case of a composite rupture, we can in principle consider first one 
zone and then the other. For f- and a-ruptures the plastic zone (if any) is cal
culated first, or, is assumed to be of the same shape as the corresponding com
plete zone-rupture. Next, the elastic zone is calculated in a similar way as in 
an ordinary line-rupture. For s- and w-ruptures, the upper zone must always be 
calculated first and the lower one afterwards.

A detailed account of the calculation for different rupture-figures shall 
be given in Section 4.

357. Choice Between Rupture-Figures

In order to avoid the most serious errors of previous earth pressure theo
ries, the general principle must be to consider, if at all possible, only rupture- 
figures which are geometrically, kinematically and statically possible. If, for 
example, the rotation centre of a wall is given, then only rupture-figures com
patible with the corresponding type of movement should be considered. Or, if the 
pressure centre of a wall is given, then only rupture-figures satisfying this 
statical condition should be taken into consideration.

However, it will often be found that, corresponding to a given rotation 
centre (or pressure centre), more than one rupture-figure may fulfil the kinema- 
tical and statical conditions. The problem then arises of which one of these 
figures should be chosen as the basis for the calculation of the earth pressure.

In earth pressure calculations by means of the extreme-method, the princi
ple is to select the critical rupture-line, i.e., the one for which the earth 
pressure resultant is a minimum (passive pressure) or a maximum (active pressure). 
This is evidently correct, if the location of the pressure centre is given, be
cause, for a greater passive (or a smaller active) pressure the average shear
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stress in the critical rupture-line would exceed the value indicated by Coulomb’s 
law (3101).

However, in the case of a given rotation centre, the corresponding crite
rion must be that the moment of the earth pressure about the rotation centre 
should be a minimum (passive pressure) or a maximum (active pressure).

The above-mentioned principles can be summarized in the following general 
rule: By a given, kinematically possible displacement of the structure the total
work done by the earth pressure (acting upon the earth) should be a minimum.

The rupture-figure, for which this minimum occurs, is called the critical 
one. However, as in any practical case only a few rupture-figures can be investi
gated, we can never be sure of having found the real critical one as defined 
above. Therefore, we can actually only distinguish between more or less critical 
rupture-figures, and of these we must naturally choose the most critical one.

The general form, which we have given the above rule, has the advantage 
that the rule can also be applied to composite ruptures, in which the total earth 
pressure on the wall is neither passive nor active. The rule is also applicable 
to more complicated cases such as, for example, that of a wall in which yield 
hinges have developed.

36. STATES OF FAILURE

361. General

In the design of an earth retaining structure by means of a theory of rup
ture, it is necessary to base the calculation on certain assumptions concerning 
the movements of the structure in the state of failure.

Only such states of failure should be considered, which are kinematically 
and statically possible. A state of failure is described as kinematically possi
ble, when the deformations and movements of the structure are compatible with 
each other and with the possible restraints imposed on it by other structural 
elements. Further, a state of failure is described as statically possible, when 
the equations of equilibrium for the structure (or any finite part of it) can 
be satisfied hy a suitable choice of the unknown quantities (forces, dimensions 
or safety-factors).

When discussing different states of failure it will be practical to dis
tinguish between single structures (without or with yield hinges) and composite 
structures (e. g. a sheet wall connected by anchor bars to anchor slabs). Further, 
we must distinguish between earth pressure investigations (which may include in
vestigations of foundation pressures) and stability investigations.

The determination of the earth pressure (or foundation pressure) on a wall 
is only possible when a rupture-line starts at the ground surface (or a free 
earth front) and ends at a point of the wall (usually its foot). This applies to 
both sides of a wall and - in the case of a composite structure - to all the in
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dividual walls. If rupture-lines are used, which do not fulfil this condition 
completely, one or more of the earth pressures cannot be determined, and we are 
then only able to investigate the stability of the structure.

In earth pressure investigations by means of the plasticity theory, the 
earth pressures are found to be functions, not of the actual movements (or rates 
of movements) of the different rigid parts of the structure, but of the types of 
these movements or, more strictly speaking, of the coordinates of the different 
rotation centres.

Apart from the earth pressures, the structure may have one or more exterior 
forces acting upon it. Some of these forces may correspond to restraints imposed 
upon the structure by other structural elements. A tie-bar connection involves 
one such force, a hinged connection two, and a rigid connection two forces and a 
moment. Hie latter also applies to a yield hinge developing at a point where the 
wall is fixed to a more massive structure. A yield hinge developing at a point, 
where the moment attains an extreme value (constant section modulus), involves, 
however, only a moment and an axial force, because the transversal force must be 
zero here.

A special exterior force is the point resistance S acting upwards on the 
base of a comparatively thin wall. Strictly speaking, this force should include 
a transversal as well as an axial component, but we shall disregard the former, 
this being on the safe side and also making the calculations considerably simpler. 
If the wall rises in the state of failure, we must have S = 0, and if it sinks 
S must be equal to the ultimate point resistance (calculated in a similar way as 
for piles and with a suitable safety factor). Finally, if the wall does not move 
axially, S can have any value between the mentioned extremes and must, therefore, 
be considered as an unknown quantity. In that case, the rotation centre is locat
ed at the wall proper (or its extension).

For the determination of the unknown quantities, we have first 3 statical 
equilibrium conditions for each separate rigid part of the structure. Further, 
we may have a number of kinematical conditions.

Two parts, which are rigidly connected, must have the same rotation centra 
If they have a hinged connection, their rotation centres must be situated at a 
straight line through the hinge, and if one of the parts is unyielding the other 
must rotate about the hinge. Finally, if two parts have a tie-bar connection, 
their rotation centres are independent of each other, unless one of the parts is 
unyielding, in which case the other must rotate about a point of the tie-bar (or 
its extension).

In some cases additional statical or kinematical conditions are imposed 
arbitrarily upon the structure, usually for the sake of economy. It is, for 
example, often specified that the greatest positive and negative moments in a 
wall should be numerically equal. Another example concerns an anchor slab, the 
movement of which is usually chosen to be a translation, thus enabling the an
chor slab to resist the greatest possible anchor pull.

The total number of statical and kinematical conditions indicates the num
ber of unknown quantities which can be determined by the calculation. Hie re
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maining ones must be fixed in advance. The unknown quantities may be dimensions, 
angles, forces, moments, safety-factors and coordinates of rotation centres. A 
number of examples shall be given in the following.

362. Single Structures

The simplest cases concern a wall which, in the state of failure, rotates 
as one rigid body about a certain rotation centre. By means of the 3 equilibrium 
conditions for the wall we can always determine 3 unknown quantities.

When the location of the rotation centre is given, the corresponding re
straining forces will usually be unknown quantities. In the case of a wall ro
tating about a yield hinge, which has developed at the point where the wall is 
fixed to a more massive structure, the three restraining forces are unknown 
quantities.

Example 36a: A fixed sheet wall (Fig. 36A). Provided that the wall is designed in such 
a way that a yield hinge develops at the top only, it will rotate about this point. The unknown 
quantities are: the yield hinge moment (Mj.) as well as the axial force (Nj) and the transversal 
force (A) in the yield hinge. In principle, the design can be made with any chosen driving depth 
(I12) within certain limits, but for economical reasons the driving depth is usually determined 
by the condition that the greatest positive and negative moments in the wall should be numeri
cally equal.
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Fig.36C: Free sheet wallFig.36A: Fixed sheet wall Fig.36B: Anchored sheet wall

When the wall can rotate freely about a given rotation centre, there will 
be two restraining forces only. They may be the two force components in a hinge, 
but can also be independent of each other (e. g. an anchor pull and a point re
sistance). As the third unknown quantity a force, a dimension or a safety factor 
may be chosen.

Example 36b: An anchored sheet wall (Fig.36B). When the anchorage is unyielding, the 
rotation centre must be located at the anchor, and if the ultimate point resistance is not ex
ceeded, it must be located at the wall. Consequently, the wall must rotate about the anchor
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point. Provided that the wall is made so strong that no yield hinge will develop, the unknown 
quantities may be: the anchor pull (A), the point resistance (S) and the driving depth (h2).

In some cases, only one coordinate of the rotation centre is given; the 
other is then one of the unknown quantities. Correspondingly, there will be one 
restraining force only (e. g. an anchor pull or a point resistance). As the third 
unknown quantity a force, a dimension or a safety factor may be chosen.

Example 36c: A free sheet wall (Fig. 36C). If the ultimate point resistance is not ex
ceeded, the rotation centre must be located at the wall proper. Provided that the wall is made 
so strong that no yield hinge will develop in it, the unknown quantities may be: the height of 
the rotation centre (x), the point resistance (S) and the driving depth (h2).

Other cases, in which only one coordinate of the rotation centre is known, 
may occur for walls without point resistance (e. g. when they rise in the state of 
failure). The “known” coordinate may not be given a priori but may be chosen 
arbitrarily, whereas the other coordinate is unknown. The second unknown quanti
ty may be the location of an exterior force with a given inclination, and the 
third the magnitude of this force, a dimension or a safety factor.

Example 36d: An anchor slab, the movement of which is chosen so as to be a translation 
(Fig.36D). The unknown quantities are: the direction of the translation (0), the anchor pull (A) 
and the location of the anchor point (q). When the anchor slab is designed according to such a 
calculation no movement other than the assumed translation is possible, as only this movement 
can give a resultant in the line of the anchor pull.

Fig,36E: Rotating anchor slabFig.36D: Translating anchor slab

When the rotation centre is unknown, we must consider both of its coordi
nates as unknown quantities. The third may be a force, a dimension or a safety 
factor. This case occurs when a structure is not restrained in any way, apart 
from an exterior force of given inclination and location acting upon it.

Example 36e: An anchor slab with a given anchor point and a given inclination of the 
anchor pull (Fig.36E). The unknown quantities are : the two parameters of the rotation centre 
(a, 0) and the anchor pull (A).

In the case of a zone-rupture, the earth pressure can be found without 
knowing the actual position of the rotation centre, provided that it is known to 
be located within a certain area. However, the full design of a structure will 
usually require the determination of the exact location of the rotation centre.
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Examp 1e 36f: A retaining wall founded direct on 
•the ground (Fig. 36F). In order to mobilize the neces
sary friction, its base must move away from the fill, 
and, in order to resist the overturning moment, the 
toe must settle more than the heel. Consequently, the 
rotation centre must be located somewhere below the 
base. This knowledge is sufficient to determine the 
earth pressure on the back of the wall, because a zone- 
rupture will occur here. However, the foundation press
ure on the base is a function of the actual coordin
ates of the rotation centre. In a rational design the 
3 equations of equilibrium for the wall should be used 
to determine the following 3 unknown quantities: the 
coordinates of the rotation centre and a dimension 
(e. g., the base width) or a safety factor.

So far, we have only considered cases, 
in which the wall rotates as one rigid body.
We shall now deal with the more complicated 
case, in which the wall, in the state of fai
lure, moves as two or more rigid parts con

nected by yield hinges. Each of these parts rotates then about its individual 
rotation centre (certain parts may be stationary, however). Yield hinges may de
velop, either at points where the moment attains an extreme value (in which case 
the transversal force is zero), or at points where the section modulus changes 
suddenly (e.g., at the point where a wall is fixed to a more massive structure).

The earth pressures on the different parts of the wall are, generally, func
tions of the coordinates of all rotation centres and all yield hinges. These co
ordinates are not independent, however, because for kinematical reasons a yield 
hinge and the rotation centres for the two adjoining parts must lie on a single 
straight line. A number of the mentioned coordinates are unknown quantities in 
the problem. Other unknown quantities are, usually, the moments and axial forces 
in the yield hinges. Finally, certain dimensions, exterior forces or safety fac
tors may also be unknown quantities.

For each separate part of the wall we have 3 statical equilibrium condi
tions, i.e., 3N equations if the wall moves as N rigid parts connected by yield 
hinges. Consequently, we can always determine 3N unknown quantities. We may in 
certain cases impose additional conditions on the structure, requiring, for ex
ample, the numerical equality of different yield hinge moments.

In the simple case of a wall with one moving and one stationary part, we 
may investigate the moving part separately. It rotates, naturally, about the 
yield hinge, and the unknown quantities are: the moment and axial force in the 
yield hinge, and the height of the moving part. A more complicated investigation 
is required to determine the driving depth which is necessary to ensure that the 
lower part actually remains stationary.

Example 36 g: A free sheet wall with a yield hinge (Fig.36G). When the driving depth is 
sufficiently great, the lower part will remain stationary while the upper part rotates about the 
yield hinge. The unknown quantities are as mentioned above (Mi, NlP h3), and are determined by 
means of the 3 equilibrium conditions for the upper part.

Fig.36F: Retaining wail
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Fig.36G: Free sheet wall Fig.36H: Anchored sheet wall Fig.361: Anchored sheet wall

We have already seen that, in the case of a zone-rupture, the earth press
ure on a rigid wall is independent of the actual location of the rotation centre. 
In the case of a wall with yield hinges, this is not absolutely correct, but may 
be assumed as an approximation. Therefore, it is not necessary to determine the 
actual rotation centre for a part of the wall which is in contact with plastic 
earth zones only.

Example 36h: An anchored sheet wall with an unyielding anchorage and a yield hinge in the 
wall (Pig.36H). The upper part rotates about the anchor point, and the lower part can be assumed 
to rotate about a point below its foot, provided that the design is made accordingly (compare 

3bcA Example The actual position of the lower rotation centre is unimportant, as zone-ruptures
will occur at both sides of the lower part. The unknown quantities are then the following 6: the 
heights of the two parts (h3, h4), the anchor pull (A), the moment (M2) and the axial force (N2) 
in the yield hinge, and the point resistance (S). They can be determined by means of the 
2 x 3 = 6 equilibrium conditions for the two parts of the wall.

In the above-mentioned case the exact location of the lower rotation centre 
cannot be determined, because its coordinates do not enter into the equilibrium 
equations. In the general case, however, the height of the lower rotation centre 
can be determined hy the calculation, if so desired, but then one of the unknown 
quantities in the former problem must be considered as a given quantity.

Example 36i: An anchored sheet wall as in Example 36h, but with a greater driving depth 
(Fig.361). The upper part rotates about the anchor point, and the lower part about a point be
tween dredge level and the foot of the wall. The driving depth can be chosen arbitrarily (within 
certain limits), and the problem involves then the following 6 unknown quantities: the height of 
the upper part (h3), the anchor pull (A), the moment (M2) and axial force (N2) in the yield 
hinge, the point resistance (S), and the location of the lower rotation centre (x4).If the wall 
had been fixed at the top, a second yield hinge would have developed here; the fixing moment 
could be determined by assuming it to be numerically equal to the other yield hinge moment.

363. Composite Structures

A composite structure consists of two or more walls. They may be intercon
nected rather firmly (e. g. cellular cofferdams) or rather loosely (e. g. double 
sheet walls, and sheet walls anchored to anchor slabs). As unknown quantities.
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we must always consider the forces acting in the connections between the indivi
dual walls. Such a connection may involve one force only (e. g. the axial force 
in an anchor bar), or two forces (e. g. the axial and transversal forces in a 
hinge), or three forces (e. g. the axial and transversal forces and the moment in 
a rigid connection).

Further, if the walls fail simultaneously, it is necessary that their 
movements be compatible with each other. This implies that for two rigid walls 
with a rigid connection the rotation centres must coincide, whereas in the case 
of a hinged connection the two rotation centres must be located at a straight 
line through the hinge. For a tie-bar connection, the rotation centres are inde
pendent of each other.

The earth pressures on an individual wall will be functions of the coordi
nates of the corresponding rotation centre alone, provided that the rupture-fig
ures for this wall are completely separated from the rupture-figures for the 
other walls. Otherwise, the earth pressures may be functions, also of the coordi
nates of other rotation centres, and in that case it may prove impossible to 
determine such earth pressures at all.

For each individual wall we have, as usual, 3 statical equilibrium condi
tions, i. e., in the case of N walls, we have 3N equations. Consequently, we can 
always determine 3N unknown quantities. In a check computation of a structure 
with given dimensions, the unknown quantities will mainly be coordinates of ro
tation centres, forces in the connections and safety factors; whereas in a de
sign the safety factors and some of the coordinates will be given (or can be 
chosen) and are substituted hy unknown dimensions.

If the walls are assumed to fail simultaneously, then the same safety 
factors should be used for all the individual walls. However, it is also possible 
to base the design on the assumption that the walls do not fail simultaneously, 
in which case we should design the individual walls with different safety fac
tors. This means, that, in the design of one wall, another wall with a greater 
safety factor is considered stationary, whereas in the design of the latter wall 
itself it is supposed to move. As, theoretically, even a slight difference in 
the respective safety factors is sufficient to justify such a procedure, it can 
also be used when the safety factors are the same. Expressed in another way, 
this is a consequence of the fact that the stresses in a plastic state are in
dependent of the absolute magnitude of the deformations and movements.

Example 36j: A sheet wall and an anchor slab, connected by anchor bars (Fig. 36J). The 
anchor slab is designed to translate, and the sheet wall to rotate about a point below its foot 
(Fig.36J, left). As zone-ruptures will occur at both sides of the sheet wall, the actual posi
tion of the rotation centre is unimportant. The unknown quantities are then the following 6: the 
anchor pull (A), the driving depth (I12) and the point resistance (S) of the sheet wall and, for 
the anchor slab, the depth (h), the location of the anchor point (q), and the direction of the 
translation (P).

Instead of choosing, for the sheet wall, a rotation centre below its foot, we can also 
choose a rotation centre above the anchor (Fig.36J, right). The unknown quantities are the same 
as before, but the earth pressures on the sheet wall are, naturally, not the same, as they must 
now correspond to the new rotation centre. Consequently, a different design will be obtained.

As we are free in the choice of the rotation centre of the sheet wall, provided that it 
does not make the anchor point move towards the anchor slab, we may in the limiting case choose
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Fig.36J: Sheet wall and anchor slab, connected by anchor bars

the anchor point proper as rotation centre. This means that the sheet wall and the anchor slab 
can actually be designed independently of each other.

It should be noted that with regard to the anchor length we can only determine a lower 
limit, viz., by the condition that the rupture-figures for the sheet wall and the anchor slab 
respectively should be completely separated from each other. The corresponding anchor length may 
not be sufficient, however, for reasons which shall be explained in Example 36 1.

364. Stability Investigations

In the preceding Sections 362-63, we have dealt exclusively with earth 
pressure investigations, for which it is necessary, on each side of each wall, 
to have a rupture-line running from the ground surface to the wall, without 
touching or enclosing any other wall.

However, other types of failure are possible, which do not satisfy this 
condition (Pigs. 36K-L). In such cases one or more of the individual earth press
ures cannot be determined, but the safety of the whole structure (or a part of 
it) against sliding can be calculated. Therefore, calculations for failures such 
as those shown in Pigs. 36K-L are referred to as stability investigations.

Whereas earth pressure investigations are generally most easily carried 
out by means of the equilibrium-method, stability investigations are usually 
simplest when the extreme-method is employed, using as rupture-lines logarithmic 
spirals (cp * 0) or circles (<p = 0). This method has been described by many authors, 
e. g. Fellenius (1927), Rendulic (1935), Skempton (1948) and Brinch Hansen (1952).

However, for systematical reasons, the stability investigations shall here 
be discussed under the assumption that the equilibrium-method is used. As we have 
proved in Section 341, the results will be practically the same as found by means 
of the extreme-method.

We shall first consider the case of a rupture-line leading from one ground 
surface to another, clear below the structure (Pig. 36K). We have here a rupture A 
with a circular rupture-line, and the earth mass above this circle must rotate 
about its centre. In all, 4 conditions must be satisfied, viz. 3 equilibrium
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conditions for the moving earth mass (inciuding the structure) and 1 condition 
expressing that the stresses at the two ground surfaces (as determined by 3411) 
should satisfy the stress equation 3318. Consequently, we can determine 4 unknown 
quanti ti es.

The simplest case concerns a structure with no direct connection to any 
structure outside the moving earth mass (Pig. 36K, left). Three of the unknown 
quantities are the geometrical parameters of the circle and the fourth may be the 
safety factor. It should be noted that it is impossible to determine the earth 
pressures on individual parts of the structure.

More complicated cases may occur when a wall is connected to a structure 
outside the moving earth mass, e. g., by a tie-bar connection. If the wall and the 
restraining structure can fail simultaneously (Pig. 36K, centre), no restriction 
is imposed on the movements of the wall. In this case we can find the 3 parameters 
of the circle, and either the safety factor or the necessary restraining force.

If the restraining structure is unyielding (possessing a greater factor of 
safety than the wall), it restrains the movements of the wall in a given way (Pig. 
36K, right). Circles compatible with this possess less than 3 independent para
meters, and we can therefore, in addition, determine the restraining forces as 
well as the safety factor for the wall.

Fig.36K: Unrestrained and restrained A-failures

Example 36k: A sheet wall and an anchor slab, connected by anchor bars (Fig.36K). In 
an unrestrained A-failure (Fig.36K, left) the critical circle does not intersect any structural 
elements. The unknown quantities are: the safety-factor and the 3 parameters of the critical 
circle. They can be determined by means of 3 equilibrium conditions and 1 stress condition as 
explained above.

In a restrained A-failure. the critical circle intersects the anchor bars. If we wish to 
find the anchor pull (At) which will provide the sheet wall with a given safety (nt) against 
failure, the unknown quantities are: the anchor pull and the 3 parameters of the critical circle 
(Fig.36K, centre). As a yielding anchorage is presumed, the anchor slab should be designed for 
the calculated pull (Aj) with the same safety factor (nt) as specified for the wall.

If desired, we can also calculate the anchor pull (A2) which is necessary to ensure that 
the anchor point of the sheet wall does not move horizontally (Fig. 36K, right). In this case 
the- unknown quantities are: the anchor pull, the safety factor (n2) for the sheet wall and 2 pa
rameters of the critical circle, which must have its centre on the anchor. As an unyielding an
chorage is presumed, the anchor slab must be designed for the calculated anchor pull (A2) with 
at least the same safety factor (n2) as found for the wall.

In the above-mentioned stability failures, the rupture-line consists of one 
circle, running from one ground surface to another without touching any of the 
walls (Fig. 36K). We shall now consider another group of stability failures, in 
which the rupture-line is composite and touches one or more of the walls (Fig. 36L).
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The main rupture-line may run from a ground surface clear below one wall 
to the foot of another wall, where it meets a secondary rupture-line (Fig.36L, 
left and centre). For kinematical reasons the centres of the two rupture-circles 
must be located at the same normal to the wall at which they meet, provided that 
this normal is not located below the wall proper. In actual stability investiga
tions by means of the extreme-method the two centres are usually assumed to co
incide, i.e., a single circle (or spiral) is used.

In the equilibrium-method, the unknown quantities may be the safety factor 
and the two independent parameters of the main circle, the exterior earth press
ure being a function of these parameters. For the determination of the 3 unknown 
quantities, we have the 3 equilibrium conditions for the earth mass bounded by 
the main circle and the wall which this circle touches.

Finally, the main rupture-line may run direct from one wall to another 
without touching the ground surface (Fig.36L, right). The main rupture-line may 
be of the type A or X, and at the foot of each wall it meets a secondary rupture 
line. If the centre of the main circle is located below the wall, the secondary 
rupture will be a zone-rupture and, consequently, the exterior earth pressure 
will be independent of the actual position of the rotation centre. This allows 
an extreme-calculation to be carried out with a circle (or spiral) running be
tween the walls only, the exterior earth pressures having been calculated as nor 
mal passive or active pressures respectively.

In the equilibrium-method, the unknown quantities may be the safety factor 
one independent parameter of the main circle, and the boundary stress at one end 
of this circle. For their determination we have the 3 equilibrium conditions for 
the earth mass bounded by the main circle and the two walls.

Fig.36L: Composite A- failures and X- failure

Example 361: A sheet wall and an anchor slab, connected by anchor bars (Fig. 36L). If we 
investigate a composite A-failure (Fig.36L. left or centre) we can find the unknown quantities 
as mentioned above. It should be noted, however, that, apart from the exterior earth pressure 
corresponding to the secondary rupture-1ine, we cannot determine the earth pressures on the in
dividual walls, nor the anchor pull.

In order to determine the necessary anchor length, it will usually be necessary to in
vestigate a composite X-failure (Fig.36L, right). On the exterior side of the anchor slab, we 
have ordinary active pressure, and on the exterior side of the sheet wall ordinary passive 
pressure. With a given safety factor we wish to find the smallest allowable anchor length. The 
other unknown quantities are the central angle of the circle and the stress in one end point.

As most other stability investigations, this is most easily made by means of the extreme 
method, employing as main rupture-line a circle ( cp = 0) or a logarithmic spiral (cp * 0). The 
necessary anchor length determined in this way will usually exceed the lower limit found as de
scribed in Example 36j.
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365. Choice Between States of Failure

When an earth retaining structure is to be designed by means of a theory 
of rupture it will, as already mentioned, be necessary to base the calculation 
on an assumed state of failure. This state of failure must, of course, be kine
matically and statically possible.

Simple structures can often fail in one way only, but for more complicated 
structures different possibilities may exist, as we have seen in Sections 362-64. 
The question is then, which of the possible states of failure should be chosen 
as the basis of the design.

It is evident that, if a structure is designed with an adequate safety 
against a certain type of failure, this failure will not occur under ordinary 
working conditions. But it is not equally evident that another type of failure, 
involving a smaller safety factor, might not occur.

However, it is a common feature of the behaviour of earth retaining struc
tures that, when a part of the structure yields, the earth pressure on this part 
is decreased. At the same time, the pressures on the unyielding parts are usually 
increased somewhat, and this is definitely so for a part which is forced against 
the earth.

Therefore, if a structure, which is designed to fail in a certain way, 
should begin to yield in another way, this very movement will soon reduce the 
earth pressure on the yielding part to a smaller value than that for which it is 
designed. At the same time, the pressure on the part, which was designed to 
yield, will increase above the design value. Hie combined result of this press
ure redistribution will be that the “ unforeseen” yielding ceases and that, if 
the structure fails at all, it must do so in the manner assumed in its design.

Example 36m: An anchored sheet wall. As we have seen in the examples in Sections 
362-64, such a structure may fail in several different ways. The earth in front of its foot may 
yield, making the wall rotate about the anchor point (Fig.36B) or a higher point (Fig.36J, right). 
The anchorage may yield, making the wall rotate about a point below the wall (Fig.36J, left) or 
about a higher point (Fig. 361).

If, for example, the anchored sheet wall is designed for earth pressures corresponding to 
a rotation about the anchor point (Fig.36B), it cannot fail in any other wav. If the anchorage 
should start yielding, this will instantly reduce the pressure on the upper part of the wall, 
decreasing the anchor pull and thereby stopping the anchor yield. And if a yield hinge should 
begin to develop in the wall, this will reduce the pressure on the central part of the wall, de
creasing the yield moment and thereby stopping the yield in the wall. Consequently, the assumed 
yielding of the earth in front of the wall is the only movement which will not be counteracted 
by a pressure redistribution, no* envisaged in the design.

The above considerations are valid, as long as we consider only failures 
such as those used in earth pressure investigations, because we can then calcu
late all the individual earth pressures, for which we will find that they change 
with the movements of the structure in the general way described above.

However, in Section 364, we have seen that, in cases of stability failures, 
some of the earth pressures cannot be calculated, and therefore we do not know
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how they will vary with the movements of the structure. Consequently, the possi
bility exists that, even if a structure is designed for the earth pressures cor
responding to a certain state of failure, a stability failure of another type 
may be more critical (involve a smaller factor of safety).

Example 36n: A sheet wall and an anchor slab, connected by anchor bars. We presume that 
we have designed the sheet wall for rotation about the anchor point (Pig. 36B) and the anchor slab 
for a translation (Fig. 36D). The anchor bars are made of a length which will just keep the rup
ture-figures for the wall and the slab from touching each other (Fig.36J).

It has already been mentioned in Example 361, that a stability failure of the composite 
X-type (Fig.36L. right) will usually involve a smaller safety factor, unless the anchor length 
is increased.

However, also other stability failures may prove more critical than the design failure, 
e. g-, the restrained A-failures (Fig. 36K, centre and right). This may be the case when the pas
sive earth pressure in front of the wall increases rather slowly with the depth and when the 
anchor point is placed rather low. If, in such a case, we calculate the driving depth necessary 
for equilibrium, there will usually be two possible solutions, of which the one with the smaller 
driving depth will be unstable, because a stability failure of the A-type proves to be more 
critical.

As a result of the above con si derations, we may state the following general 
rule: A safe design of an earth retaining structure can be made on the basis of
any kinematically and statically possible state of failure, provided that a sta
bility failure does not prove to be more critical. In the latter case the final 
design must, of course, be based on the most critical stability failure.

If soft layers are present below the structure, a stability investigation 
is definitely called for. Such an investigation is also necessary in order to 
find, for example, the safe distance between two walls in a composite structure 
(see Example 36 1).

Further, in many problems, especially in cases of low anchor points and 
slowly increasing passive pressures, there will be two possible solutions, one 
of which is actually unstable (see Example 36n). Fortunately, it will often be 
rather evident when an unstable solution has been obtained. If, for example, in 
the design of an anchored sheet wall a driving depth has been found, for which 
the active unit pressure at the foot exceeds the passive unit pressure, this is 
a strong indication that a stability failure may be more critical, because a 
somewhat longer wall would be unstable.

However, at least for single structures, stability failures are usually not 
considered, and in that case we can, according to the above-mentioned rule, in 
principle freely choose the state of failure, on which we wish to base our de
sign. In practice, the choice will usually be decided hy considerations regard
ing the permissibility of the necessary deformations and the economy of the de
sign.

The movements and deformations necessary to produce a certain state of 
failure may be too great. Naturally, as a suitable safety against failure is pro
vided for, the actual deformations will mostly be elastic and hence rather small. 
On the other hand, the assumed plastic deformations may often develop to some 
degree even under normal working conditions. This tendency is especially pro
nounced in the case of plastic clay. Consequently, a certain caution is called
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for when designing a structure in clay on the basis of a theory of rupture, as 
this may lead to unallowable deformations.

Limited movements of a structure as a whole are not very harmful, but plas
tic deformations within the structure proper are more serious (especially in con
crete structures). However, for certain structures (e. g. a fixed sheet wall) no 
state of failure can be indicated which does not involve at least one yield 
hinge, and for other structures (e. g. an anchored sheet wall) economical consi
derations may require the adoption of a state of failure involving a yield hinge.

Different states of failure lead, generally, to different designs and of 
these we must, of course, choose the one involving the lowest total cost. Usually, 
a cursory examination of the main possibilities will suffice to point out the 
most economical, but in special cases it may be necessary to make and compare 
full designs, based on different states of failure.

When a certain state of failure has been chosen, it must be used as a basis 
for the whole design, with the exception of such quantities, for which greater 
values are required in a stability investigation (e. g. the distance between a 
sheet wall and its anchor slab). It is not permissible to design different parts 
of the structure for different states of failure, each of which leads to the 
smallest possible dimensions of the part in question. If this was done the struc
ture would not be safe, as no state of failure could be indicated, for which the 
structure would be in equilibrium.

In most earth pressure problems it is possible to indicate in advance the 
critical combination of loads, water levels and other variable factors. There
fore, it is usually only necessary to carry out one calculation. However, in 
certain cases it is not evident, which combination is the most critical one. In * 
other cases, different combinations may be decisive for different parts of the 
structure. In such cases, two or more loading cases must be separately investi
gated.

The states of failure used in investigations of the same structure for dif
ferent loading cases may, if statically possible, be identical, but they may also 
be different. Each part of the structure must be given the greatest of the dimen
sions found in the different calculations. The most economical design will usually 
be found by assuming identical states of failure.

So far, we have mainly dealt with design problems, which are the most com
mon in engineering practice. If we wish to make a check computation of a given 
structure, we cannot freely choose the state of failure. Instead, we must try a 
probable state of failure and see, whether it is possible to fulfil all the sta
tical conditions. Moreover, the safety factor is here an unknown quantity, which 
fact complicates the practical calculation considerably. However, the latter dif
ficulty may be overcome by considering the yield moment in the wall as an unknown 
quantity instead of the safety factor.

Example 36o: An anchored wall with an unyielding anchorage. The possible states of 
failure for different driving depths are shown in Fig.36M. The symbols for the corresponding 
figures of rupture at both sides of the wall are also indicated (for a smooth wall).
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If the driving depth is given, we must try a probable state of failure, e.g. the central 
one in Fig.36M, which is identical with the one shown in Fig. 361. As in Example 36i. the 6 un
known quantities are: A. N2, M2, S, h3 and x*. If a solution exists, we have then chosen the cor
rect state of failure, and if the calculated values of A, N2, M2 and S do not exceed the per
missible values, the structure is safe.

37. SOIL CONSTANTS AND SAFETY FACTORS 

371. Determination of Soil Constants

In earth pressure theories based on the plasticity theory, to which also 
the author’s method belongs, a soil is characterized exclusively hy the three 
constants y (effective unit weight), cp (apparent friction angle) and c (apparent 
cohesion).

The determination of the unit weight is done by simply weighing a sample 
and measuring its volume. For clay, the unit weight will usually range between 
1.5 and 2.3 t/m3, whereas dry sand will average 1.7 t/m3, moist sand 1.8 t/m3 
and saturated sand 2.0 t/m3. The submerged unit weight, which should be used for 
earth below the water table, is found by subtracting yw = 1.0 t/m3 from the sa
turated unit weight.

The friction angle of cohesionless materials, such as sand and gravel, can, 
although with some uncertainty, be determined in situ, viz., by deep-sounding 
cone tests (Vermeiden 1948, Brinch Hansen 1951). If undisturbed samples are ob
tained, which, however, is extremely difficult (Bishop 1948), and if they are 
tested with their natural porosity, the friction angle can be found by means of 
shear box tests or triaxial tests.

In view of the uncertainties and difficulties connected with both the 
above-mentioned methods, it is often preferred to simply estimate the friction 
angle of sand or gravel. For sand, it lies generally between 30° and 40° (in
creasing with the density), and for gravel between 35° and 45°. The friction 
angle is practically the same above and below water level, provided that the 
density is the same.
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In a shear test on sand the measured friction angle proves to be a function 
of the shear strain (Pig. 37A). Por sand which is initially in a rather loose 
state, the friction angle increases steadily until the final value is reached. 
However, for sand which is initially in a rather dense state, the friction angle 
reaches first a maximum value and drops then slowly to approximately the same fi
nal value as found for loose sand.

Thus, for comparatively dense sand the ques
tion arises of whether the maximum or the final 
value should be employed (Tschebotarioff 1952).
In zone-ruptures, the shear strains seldom reach 
any considerable magnitude, and it would therefore 
seem justifiable to use the maximum value of the 
friction angle here. Line-ruptures, on the other 
hand, often imply very great shear strains and 
are, moreover, progressive, so that here it would 
seem more appropriate to use the final value of 
the friction angle. However, for the sake of sim
plicity, no such distinction shall be made in the 
examples in the present work.

The apparent cohesion (actually the undrained shear strength) of a "fric
tionless ” material, such as fully saturated clay, can be determined in situ by 
means of vane tests (Cadling and Odenstad 1950); this is probably the most re
liable method known at present. Por not too great depths and not too sensitive 
clays comparatively correct results can also be obtained by making unconfined

compression tests or unconsolidated-undrained tri- 
axial tests on undisturbed samples. The " cohesion” 
should then be assumed equal to half the compres
sion strength.

As the cohesion of clays may vary within 
very wide limits, no important earth pressure cal
culation should be based on merely estimated va
lues.

In a shear test on undisturbed clay, the 
measured shear strength proves to be a function 
of the shear strain (Fig. 37B). It reaches first 
a maximum value and drops then slowly to a lower 

final value. The ratio between the maximum and the final value is known as the 
sensitivity of the clay.

As for sand, it might be argued that for clay also, the final value of the 
shear strength should be used, at least for a progressive line-rupture. However, 
due to the incompressibility of the clay, progressive failures are probably less 
apt to occur here than in sand. Moreover, experience has shown that many slopes 
in extra-sensitive clays are actually perfectly stable, although they would be 
definitely unstable if only the low final value of the shear strength could be 
counted on. For these reasons it is generally considered justifiable to reckon 
with the maximum shear strength of the clay in stability investigations and 
earth pressure calculations, provided that an adequate safety is secured.

Shear strength

Undisturbed clay

Remoulded clay
Shear strain

Fig.37B: Stress-strain curves 
for clay

Friction angle

Loose sand

Shear strain

Fig.37A: Stress-strain curves
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With regard to soils other than fully saturated clays and cohesionless 
sands and gravels, we shall not discuss here the methods of determining the pro
per values of cp and c. A few indications have been given by Skempton and Bishop 
(1950).

372. Factors of Safety

In the design of earth-retaining structures by means of a theory of rup
ture it is necessary to introduce certain safety factors for the following rea
sons:

1) The actual loads may deviate from the specified or calculated values.

2) The actual strengths of the soils and the structural materials may de
viate from the estimated or measured values.

3) The calculation as such involves a number of unavoidable inaccuracies, 
mainly due to simplifications, approximations, etc.

In order to take these facts into consideration the calculation is carried 
out with the specified loads multiplied by certain safety factors, and with the 
measured shear strengths of the soils divided by other safety factors. Finally, 
the structures are designed for the calculated forces and moments with “allow
able” stresses equal to the measured strengths of the materials divided by suit
able safety factors.

With regard to the loads, the most important ones, viz., the weights of 
the earth masses, can be determined with great accuracy by means of very simple 
tests. Therefore, it is proposed that no special safety factor be applied to 
these weights, i.e., to put n^ = 1. This is also preferable from a practical 
point of view. For the weight of the structures proper it is likewise proposed 
that n^ = 1 be assumed.

As regards the surcharges p these are, of course, rather uncertain. On the 
other hand it seems to be current practice to specify a surcharge so high that 
it will actually seldom, if ever, occur over any considerable area. For this 
reason it is proposed putting np = l, but it will present no difficulties at all 
to reckon with rip 4= 1, if required.

Water pressures can usually be calculated very accurately, but the fixing 
of the water levels may involve some inaccuracy. Therefore, a certain safety fac
tor should be applied to water pressures, and it is proposed putting n^ = 1.2.

Summarizing the above, the following values are tentatively proposed for 
the main loads:

n = 1 np = 1 = 1.2 3701-03

Suitable safety factors must also be applied to other exterior loads such 
as wave pressures, wind pressures, bollard pulls, impact forces from berthing 
ships, etc.
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The actual shear strength of the soil under the prevailing conditions 
should always be determined by proper soil mechanics tests, as described in Sec
tion 371. It will usually be found that the internal friction of cohesionless ma
terials (sand and gravel) can be determined with less uncertainty than the cohe
sion (= undrained shear strength) of frictionless materials (fully saturated 
clay). Therefore, it seems logical to apply a smaller safety factor to a than to 
c. The following values are proposed:

n^ = 1.25 nc = 1.5 3704-05

The proposed value of n^ = 1.25 corresponds to the ratio between tan 36° 
and tan 30°. Therefore, if the actual friction angle of a soil is 36°, the calcu
lations should be made with cp = 30°. In order to save time and space the tables 
in the Appendix have been prepared for <p = 0° and q> = 30° only, and the same ap
plies to the earth pressure graphs in the Appendix. Thus, these tables and 
graphs can be used as they are, when the calculation is to be made with v = 0° 
or <p = 30°, i. e., when the actual friction angle is either 0° or 36° (provided 
that n^ • 1.25). The tables cannot be used for other friction angles, but by 
means of a simple correction (see Section 592), the graphs can be used for any 
friction angle.

The ultimate strengths of the structural materials should be determined 
experimentally, but deviations from the measured values must, of course, be ex
pected, and these deviations are greater for concrete and timber than for steel. 
Therefore, a greater safety factor must be applied to concrete and timber than 
to steel. On the other hand, all these safety factors can be smaller than those 
usually specified for such materials, because we have already applied certain 
safety factors to the shear strength of the soil and to some of the exterior 
loads.

For steel, we find the “allowable” bending or tensile stress by dividing 
the yield stress hy a safety factor n®. For concrete, we must divide the com
pression strength by a safety factor n£. Finally, for timber, the bending strength 
should be divided by n£. The following values are proposed:

n® - 1.2 n£ = 2.5 n£ - 2.5 3706-08

It is, of course, also possible to design the structure in the convention
al way with the usual allowable stresses, but in that case the forces and moments 
found by our calculations should first be divided by about 1.3. This procedure 
becomes necessary when, for example, the anchor pull from a sheet wall is trans
ferred to a relieving platform, which should be designed in the conventional way.



CALCULATION OF EARTH PRESSURES« .

41. GENERAL PRINCIPLES AND FORMULAE

411. Introduction

We consider a wall with a height h, making an angle j with the vertical 
(Fig.41A). The earth, which may be stratified, is in each layer (height hm mea
sured along the wall) characterized by the constants ym, <p cm. The ground sur
face, as well as the internal boundaries are assumed to make a constant angle i 
with the horizon and to be loaded with vertical surcharges p The surcharges on 
internal boundaries are usually zero; for i = 0, however, one of them may be a 
capillary pressure pc.

Fig.41Aj Earth pressure calculation For composite rupture- line

Between the wall and each separate earth layer acts an earth pressure with 
a normal component Em and a tangential component Fm. The latter is equal to:

Pm = tan 6m + ^ 4101
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Prom the ground surface to the foot of the wall runs a composite rupture
line, which is assumed to be a chain of N separate parts, viz., Nc circles and 
Ng straight lines. Each circle is characterized by the geometrical parameters 
“n- fV kn and each straight line by Pn, kn. The corresponding heights hn and 
widths wR can be found by means of the formulae 3203-04.

The internal forces in the n’ th rupture-line from the surface, as well as 
all surcharges and earth weights between two lines parallel to the wall through 
the end points of this rupture-line, are conveniently transferred to the middle 
point of the corresponding chord, giving a horizontal component Hn, a vertical
component Un and a moment M^. Hn is the usual horizontal resultant of the intem-
al forces in the rupture-line, whereas for Un and M we find:11 11

n-1/ £t, ^ Un ‘ vn - Gn - Pn ' \ <Gxn + Pxn> 4102 -J

Mn = MRn + MGn + ^n + “f1(MGxn + MPxn> 4103 4

The mentioned forces can also be transferred to the foot of the wall, about 
which point we get the following moment for the n’ th rupture-line:

N N
Mn - sknSin Pn + S k sin Px 

n+1
- Un \cos pn + n^x005 px

As explained in Section 346, we can only determine the stresses in the rup
ture-lines when cp has the same numerical value in all layers. In this case we 
have also the same 6 for all layers, which we shall assume in the following.

412. Geometrical Parameters

The composite rupture-line through the foot of the wall involves altogether 
3NC + 2NS geometrical parameters, and, if we are to be able to determine these, 
we must have a corresponding number of equations.

We consider first the forces acting upon the earth mass bounded by the 
ground surface, the wall and the composite rupture-line. By projection of all 
these forces on a line perpendicular to the forces Emsec 6m (which are assumed to 
be parallel) we get:

sin(6-j) 2Hn - cos(6-j) ZUn + cos 6 2an)hm = 0 4105 V

The summations in 4105 should be extended from 1 to N, and the same applies 
to all other equations in which no limits are indicated for the summations.

In 4105, 6 and an, are usually inserted with their maximum values, and with 
the same signs as <pn and c^ (for the rupture-line next to the wall). From a kine- 
matical consideration of Fig. 41B, it will be seen that this is correct, when the 
rotation centre for the wall is located in one of the sectors indicated by curved
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arrows. If the rotation centre is located in one of the 
other two sectors, 6 and a^ should be inserted with op
posite signs of <pn and cN>

In the especially important case of a “normal” 
rotation, by which the rotation centre is located at 
the wall proper or its extensions, 6 and am should 
have the same signs as cpN and c^ when 3N - aN - j >0, 
but the opposite signs when - aN - j <0.

However, it will sometimes be found that in nei
ther of these cases can a possible solution be found, 
because in both cases the results will be contradicto
ry to the assumptions. This can only mean that no tan
gential movement takes place between wall and earth, 
i.e., that the normal to the rupture-line at the foot 
of the wall goes through the rotation centre. In the 
case of a “normal" rotation this condition gives:

Fig.41B:
Stresses at foot of wall

PN - “N - J = 0 4106

In this case 4106 must be used instead of 4105, which is useless here, be
cause the actual values of 6 and am are unknown.

For the further determination of the geometrical parameters we must either 
have -a given rotation centre (x) or a given pressure centre (z). Usually, x is 
given, and we have then, provided that an elastic zone exists between the wall 
and the rupture-line next to it:

x = £h =
kN cos(PN-aN-j)

2 sin aN
i r= 2.SLrt(X 4107 -J

If z is given instead of x, equation 4107 cannot be used for the determi- 
* nation of the geometrical parameters, but may serve to indicate the location of 

the rotation centre. In its place we can find the following equation by taking 
the moments about the pressure centre:

z cos j SHjj - z sin j ZUjj + = 0 4108^

A geometrical relation between the parameters is easily derived from 
Fig.41A:

2 l^sinO^i) = h cos(j-i) 4109 J

Further, when two 
(f-rupture), we have an

rupture-lines meet each other at an angle of 0° or 180° 
equation of the type:

Vi + an+1 ^n ' “n 4110 J
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and when they meet at an angle of 90° i <P (a-rupture) we have:

Pn+1 + “n+l = ^n - “n + ^n + 90c 4111 V
Equations 4110-11 are, of course, not valid for rupture-lines meeting at 

the wall (w-ruptures) or at a “line of discontinuity” (see Section 345).

We have, in all, N - 1 equations of the types 4110-11. In addition we have 
4105 or 4106, 4107 or 4108, and 4109, i. e., 3 more. Thus, in homogeneous earth 
we have altogether N + 2 equations for the determination of the 3NC + 2NS geome
trical parameters.

It will be seen that for a single circle (N = Nc = 1, Ns = 0) the number 
of equations equals that of parameters. Por N > 1, however, it is necessary to 
indicate a number of additional conditions in order to make the problem soluble.

In the case of stratified earth, we have for each separate layer an equa
tion of the type 4109. Further, at each internal boundary 4110 must be satisfied 
and the two rupture-lines meeting here must have the same radius:

kn+l , kn 
sin an+1 sin an

4112 V

Consequently, although each new layer adds 3 geometrical parameters, we 
get also 3 new equations, so that a possible stratification does not affect the 
solubility of a problem, provided that we have the same <p (numerically) and the 
same 6 for all the layers.

413. Total Earth Pressures

When the geometrical parameters have been determined, we can find the total 
earth pressures E and F, as well as the height z of the pressure centre, by means 
of the equilibrium conditions. By projection on a normal to the wall, by projec
tion on the wall proper, and by taking the moments about the foot of the wall 
we get:

E = cos j EHjj - sin j 2Un F = sin j lHn + cos j ZUn Ez = - 4113-15 V

When 6 and a,,, are known, it is often simpler to find E, F and z from the 
following equations, the first of which is obtained hy projection on the horizon, 
whereas the last is found by taking the moments about the middle of the chord of 
the rupture-line next to the wall:

E = - sin j cos 6 sec(6-j) F = E tan 6 + 4116-17 V

Ez - Hn[e sin(PN-j) + F cos(PN-j)J-|kN|^sin PN EHjj + cos PN ZllJ - 4118

The last two terms in 4118 can, in any given case, usually be written in 
a considerably simpler form.
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In the case of no tangential movement between wall and earth, equations 
4116-18 cannot be used. It should be investigated, however, whether F as found 
from 4114 is numerically smaller than the P determined by means of 4117 with the 
maximum values of 6 and a^. If so, it was correct to use 4106 instead of 4105.

In the case of homogeneous earth <p and c are numerically constant for all 
parts of the rupture-line, but may have different signs in different parts, ac
cording to our definitions in Sections 33-34. Inserting, for any ?>n and cn, the 
numerical values <p and c, but with their proper signs, it will be found, by means 
of the pertaining formulae from Sections 32-34, that 4113-15 (or 4116-18) can be 
written in the following form:

E = |yh2X + php + chic Ez = -ly^An + ph2p0 + ch2>cC 4119-20

F = E tan 6 + ah 4121

The dimensionless constants X, r\, p, 0, k, C are functions of i, j, <p, 6, 
a:c and the geometrical parameters. In equations such as 4119-21 the cohesion c 
should always be assumed positive, whereas for a and 6 the sign rules indicated 
in Section 343 (p. 66) are valid.

414. Unit Earth Pressures

In a similar way we can, by means of 3103, 3318 and the boundary formulae 
in Section 34, for homogeneous earth, find the following expressions for the 
unit normal and tangential earth pressures at a distance d from the top of the 
wall, provided that a rupture-line meets the wall at this point:

ed = Yd\i + ppd + CKd fd = ed tan 6 + a 4122-23

The dimensionless constants Xd, pd, icd are functions of i, j, cp, 6, a:c and 
the geometrical parameters, as well as of the depth d. In equations such as 
4122-23 (and 4124-25), the cohesion c should always be assumed positive, whereas 
for a and 6 the sign rules indicated in Section 343 (p. 66) are valid.

At the top and the foot of the wall we get for d = 0 and d = h respectively. 

et = ppt + cx.t ef = yhXf + ppf + c*f 4124-25

42. LINE-RUPTURES

421. Sloping Surface and Inclined Wall

Pig. 42A shows a line-rupture A. As the rupture-line consists of a single 
circle, we have 3NC + 2NS * 3 parameters, and N + 2 - 3 conditions, so that the 
problem is soluble without further assumptions or conditions.
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When x is given, we have, for the determination of the 3 parameters, the 
equations 4105, 4107 and 4109. 4107 yields:

g = _x a cos(.j-i) cos(P-a-j) 
h 2 sin a sin(P-i)

Solving 4201 with regard to 0 we find:

cot(P-i) = 2£ sin a sec(a+j-i) sec(j-i) - tan(a+j-i) 

Further, equations 4109 and 4105 give:

cos(j-i)k = h sin(P-i)

4202

4203 -J

H sin(6-j) - (V-G-P) cos(6-j) + ah cos 6=0 4204 q

,----- -

Fig.42A: Calculation of line-rupture

The procedure is now the following. 
With an estimated value of a we find the 
corresponding 0 from 4202, ^>and then k from 
4203. After,insertion of 3206, 320b! 3325- 
26 and 3411-in 4204 it is then investigat
ed whether 4204 is satisfied. If not, a 
must be changed and the calculation re
peated, until satisfactory agreement is 
obtained.

The calculation is made for passive 
pressure with positive values of q>, c, 6 

and a, whereas negative values should be 
used for active pressure. Further, a should 
be positive for a rupture A, but negative 
for a rupture X.

When a and p have been found, it 
If not, we must, instead of 4204, useshould be investigated, whether P-a-j > 0. 

4106 which, when inserted in 4201, yields:
£-1cos(2a+j-i) = —— cos(j-i) P = a + j 4205-06

which then give a and P direct.

If z is given instead of x, the unknown angles a and P are determined ei
ther by 4108 and 4204, or by 4108 and 4106. £ is then found from 4201.

When the geometrical parameters have been determined, we can find the un
known statical quantities by means of 4113-14 and 4118:

E = H cos j - (V-G-P) sin j F = H sin j + (V-G-P) cos j 4207-08
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XL

105

Ez = |k |^E sin(g-j) + F cos(g-j)J - MR - Mq - Mp 4209

If desired, the unit earth pressure ef at the foot of the wall can be de
termined by means of 3411, 3318 and 3423. As, however, no other rupture-line 
meets the wall, the unit earth pressure cannot be determined at any other point. 
Therefore, the earth pressure distribution is, in principle, unknown.

Instead of starting the calculation with 4202-04 and investigating whether 
g - a - j > 0 it is, of course, also possible to start with 4205-06, which is 
often simpler. The result will be correct, if the calculated F (from 4208) is 
numerically smaller than the greatest possible F (from 4117).

422. Horizontal Surface and Vertical Wall

For i = j = 0 the formulae 4201-04 and 4207-09 are reduced to the following:

£ = | (1 + cot a cot g) cot g = (2£-l) tan a k * - ■ 4210-12sin g
V

H tan 6-V + G + P+ ah = 0 E = H F = V - G - P 4213-15d

Ez = ih (E + F cot g) - Mr - Mg - Mp 4216

With regard to the calculation method, see Section 421. Instead of estimat
ing a and satisfying 4213, we can also start the calculation with 4205-06, which 
(for j = 0) give:

cos 2a = £-1 g - a 4217- 18

As to the criteria for a correct solution, see Section 421.

Example 42 a

Fig.42B: Rough wall 
rotating about its top

As an example we shall consider the following case 
(Fig.42B) of active pressure on a rough wall rotating 
about its top (rupture A):

i = j = 0

Y = 1

= 0 <p = 6 = - 30°

h = 1

* 0 we get, by insertion of 3223 and 3?
& V

V

£ 4211 gives at once the result: g = 90° - a. As
3413 yields t’
26 in 4213:

(gyz + i sin 2gV(yYZ t VYX sin(2g+2<P))
+ [hYz + HYy cos(2g+2<P)] tan 6 = 0

H
With an estimated value of a we find the correspond

ing g as well as the G-, V- and H- functions (by means of Tables 1 and 3 in the Appendix). We in
vestigate then whether the above equation is satisfied. After some trial we find with a = 26.5° 
and g = 63.5°:
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J ^ J J JnI JgV
0.079 + 0. 25 x 0.798 - 0.048 - 0.179 * 0.920 - (0.184 - 0.179 x 0.390) * 0.577 = 0

We can now calculate E. F and z by means of 4214, 4121 and 4216, inserting 3326, 3335 and 
3224, and using 4212 as well as Tables 1 and 3 in the Appendix:

k - 1 : 0.895 « 1.117 k2 - 1.25

E^ = 1. 25 (0. 184 - 0. 179 * 0. 390) = 0, 142 =

1.40

F = - 0. 142 x 0.577 0.082
flr

Ez = i (0.142 - 0.082 * 0.499) - 1.40 (0.008 x 0.895 - 0.013 * 0.446)

- 1.40 (-0.080 x 0.895 + 0.083 x 0. 8953) * 0.064 

0.064 : 0. 142 = 0.45 = T\

43. ZONE-RUPTURES

431. Sloping Surface and Inclined Wall

Whereas the calculation of a line-rupture is “exact” under the given as
sumptions, because the rupture-line must be a circle, the calculation of a zone- 
rupture must generally be approximate only, as the actual shape of the rupture
lines is unknown. They shall here be approximated by a number of circles and 
straight lines, and, according to the number used, the calculation will give a 
more or less correct result.

In a zone-rupture a rup
ture-line meets the wall at any 
depth d. If we approximate such 
a line by Nc circles and Ns 
straight lines (Fig.43A), it 
will involve 3NC + 2Ng geometri
cal parameters, viz., certain 
angles (a, 6) and relative chord- 
lengths (k:d). When these para
meters are known we can calcu
late the unit normal pressure 
e^ by means of 3411, 3318 and 
3423. We get then for ed an ex
pression of the type 4122, in 
which the dimensionless quanti
ties are functions of the said 
angles and relative chord- 
lengths.

Fig.43A: Calculation of zone-rupture It Will be found, however,
that p(j and depend only upon

the angles v’j and vjj at the surface and the wall respectively. As these two angles, 
which can be determined by means of 3405 and 3419 respectively, are independent 
of the depth d, the same must apply to and x^.
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Xjj is generally not constant, however, because it depends upon all the an
gles and the relative chord-lengths in the rupture-line in question. It is actual
ly only constant in the special cases of y = 0 or p = c = 0. However, in order 
to carry out a comparatively simple calculation of a zone-rupture it is necessary 
to assume not only and but also to be constant. This means that we as
sume the unit normal pressure to increase linearly from et (4124) at the top to 
ef (4125) at the foot. In this case we need only consider the geometrical para
meters of the lowest rupture-line as the unknown quantities.

According to the above-mentioned assumption we have:

E = {h (ef + et) Ez = ?h2(ef + 2et) 4301-02 V

As e^ and e^. are functions of the geometrical parameters for the lowest 
rupture-line, the same applies to E and z. There are, consequently, no,other un
known quantities in the problem than these parameters. Par their determination 
we have first equations 4109 and 4105, which always must be satisfied, if serious
errors are to be avoided:

Z k sin(g-i) = h cos(j-i) 4303'/

sin(6-j) ZH - cos(6-j) Zu + ah cos 6 = 0 4304 ^

As the remaining two equilibrium conditions we choose 4116 and 4108:
M tc>(

E - (ZH - ah sin j) cos 6 sec(6-j) = 0 4305^

z (cos j ZH - sin j ZU) + ZMf = 0 4306 y

Although the most accurate results are, of course, obtained by satisfying 
also 4305-06, it has been found that very good approximate results can be obtain
ed by disregarding 4305 or 4306 or both.

For a zone-rupture with N > 1 it will be natural to have the rupture-line 
meet the surface and the wall at the statically correct angles. The corresponding 
angles v’^ and vJJ are determined by means of 3405 and 3419 respectively. We have 
then: ^ ^

+ “j = PN - aN = vft 4307-08

Moreover, when the rupture-line contains at least one circle (Nc si), we 
shall require the rupture-line to have a smooth contour. This means that we have 
N - 1 conditions of the type 4110:

Vl + Vl = Pn - “n 4309"

Finally, it will simplify the practical calculation, if we also require all 
circles to possess the same central angle. This gives Nc - 1 conditions of the 
type:

4310 v
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Adding up, we find that we have a minimum of 2 equations (4303-04) and a 
maximum of 2NC + Ng + 4 equations (4303-10). Comparing this with the 3NC + 2NS 
parameters, we get the result that the problem is soluble when H N < 4.

A rupture-line satisfying 4309 is “ kinematically admissible” (Section 226) 
and gives, consequently, a somewhat too high value of E. On the other hand, a 
rupture-line consisting of straight lines only (Nc = 0, Ns > 2) is “ statically 
admissible” and gives, therefore, a somewhat too low value of E. For such a rup
ture-line we cannot fulfil 4309, and 4310 has no meaning in this case. Instead, 
it will be practical to require that each pair of rupture-lines should meet each 
other at the same angle. This gives Ns - 2 conditions of the type:

” ^n+1

vi v”VN
N<? - 1

4311

We have, in this case, a maximum of Ng + 4 equations (4303-08 and 4311) 
and, at the same time, 2NS parameters. This leads to the result that the problem 
is soluble when 2 « N « 4. (1 straight rupture-line is not statically but kine
matically admissible).

Consequently, in order to calculate a zone-rupture, we must approximate the 
lowest rupture-line by means of 1 to 4 circles and/or straight lines.

With 1 straight line we can satisfy only 4303-04. The result is the same 
as obtained by means of Coulomb’s method. It may be sufficiently correct for ac
tive pressures but is usually far too inaccurate for passive pressures.

With 1 circle we can fulfil one condition more, which must be 4306, as 4305 
might give the result a = 0, i.e., a straight line. However, the result is not 
very correct and the calculation rather troublesome, because a and 8 can only be 
determined by trial.

As soon as we have at least 2 circles and/or straight lines, we can fulfil 
4303-04 and 4307-08 as well as 4309-10 or 4311. This means that all angles a and 
6 are given from the start, so that the only remaining unknown parameters are the 
chord-lengths k. This gives, of course, the simplest calculations. With 2 circles 
and/or straight lines, the two chord-lengths may be determined hy means of 4303-04. 
With 3 circles and/or straight lines, we must also use 4305, and with 4 circles 
and/or straight lines 4306 must be added as well.

When straight lines alone are used, it will usually be necessary to employ 
3 of these in order to get a sufficiently reliable result. Circles alone should 
never be used, because the rupture-line is actually straight in the vicinity of 
the ground surface, and a better result will therefore be obtained by using a 
straight line here. The same applies to the vicinity of the wall, unless it is 
perfectly rough.

Consequently, when the wall is not perfectly rough, the rupture-line should 
be approximated by two straight lines with a circle in between. If the wall is 
perfectly rough, two circles and one straight line can be used for a very accu
rate calculation, but often it will be sufficient to use one circle and one 
straight line (see Example 43a).
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When the geometrical parameters have been determined, we can calculate e^ 
and e^ (the latter with k = 0) by means of 3411, 3318 and 3423. E and z must then 
be found from 4301-02. whereas 4305-06 cannot be used for this purpose, as they 
will yield much too inaccurate results when they have been disregarded by the 
calculation of the parameters. However, in spite of this, 4301-02 may give very 
reliable results (see Example 43a).

6 and a should always have the same signs as qp and c (positive for passive 
pressure, and negative for active pressure). If we try to calculate a zone-rup
ture, in which 6 and a are given the opposite signs of <p and c, the boundary con
dition will require that the wall should be a tangent to the rupture-lines. How
ever, it seems impossible to find an approximate rupture-line of a comparatively 
simple shape, which fulfils the boundary conditions as well as the equilibrium 
conditions. Therefore, a zone-rupture can probably not occur, when 6 and a have 
signs different from those of <p and c.

43. Zone-Ruptures

432. Horizontal Surface and Vertical Wall
& b'l

For the statically correct angles v’j and v^ we get from 3410 and 3421-22, 
with i = j =0:

v’j * 45° - i<? vfts = 45° - i<P vfir = - <P 4312-14 /
' ft ■> k

where the subscripts s and r denote a smooth and a rough wall respectively. With 
the above values we find, further, from 3413 and 3425:

6? &
tj = p tan(45°+§<p) + c es = (tjj + c) tan(45°+?<p) er « tfj cos <p 4315-17 V

t” is derived from t’. by one or more applications of 3318. The formulae 
4312-17 can, of course, only be used when we have chosen a rupture-line which 
meets the surface and the wall at the statically correct angles.

Por i = j =0, the formulae 4303-06 are reduced to the following:

2 k sin 6 = h tan 6 ZH - ZU + ah - 0 4318-19 ~

E - 2H - 0 Z 2H + ZMf = 0 4320-21''

The remaining formulae 4301-02 and 4307-11 are unchanged.

As to the calculation method see Section 431. It should be noted that E and 
z cannot be calculated with sufficient accuracy by means of 4320-21, but must be 
found from 4301-02.

Example 43a

As an example, we shall consider the following case of passive pressure on a rough wall 
(rupture P):

i = j = 0 p = c = a = 0

<p = 6 = +30 Y = 1 h = 1
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Fig.43B: Passive zone-rupture for rough wall

We choose here to approximate 
the lowest rupture-line by means of 
1 straight line and 1 circle (Pig. 43B). 
Prom 4312 and 4314 we get = 30° 
and v2 = - 30°. As dj = 0° we find 
from 4307-09 successively: p4 = 30°. 
d2 = 30° and P2 = 0°.

Next, 4318 gives - 2, so 
that k2 is the only remaining un
known quantity. It shall be deter
mined by means of 4319. As ti = 0, 
we get, by means of 3318 and Table 2 
in the Appendix:

ti’ = 2 (0.866 x 0.5 + 0.5 x 0.866) = 1.732 = t^

The forces G are determined by 3223 and 3227 with the aid of Table 1:

Gi = 22 X 0 . 25 X 0.866 = 0.866 G2 = k|x 0.091 G12 = 1 x k2 = k2

The forces V and H are found from 3325-26 by means of Table 2:

Vi = 22x 0.25 x 0.866 = 0.866 = Gi Hi = 22(0.25 + 0 . 25 x 0.5) = 1.5

V2 = k!(0. 170 + 0.397 X 0.866) + k2x 1.732 x U82 x i = 0.514 ki + 3.086 k2

H2 = k2(0.377 - 0.397 * 0.5) + k2x 1.732 x 0.793 x 1 = 0.178 kf + 1.375 k2

We can now insert into 4319, which gives:

0.577 (1.5 + 0.178 k§ + 1.375 k2) - 0.866 - 0.514 kf - 3.086 k2 + 0.866 + 0.091 ki + k2 = 
0.320 k| + 1.293 k2 - 0.866 = 0 k2 * 0.59

Then we find from 3318 and 4317, using Table 2:

t’2’ = 0.59 x 1.147 + 1.732 x 3.35 = 6.48 ef = 6.48 x 0.866 = 5.61 - X

As we must have et = 0, we get, from 4301-02: WCO*. =

E = i x 5.61 = 2.81 = £X

If we use 4320-21, we find the less correct values E = 2.39 and z = 0.29. In spite of 
these considerable deviations, a more correct calculation, by means of 1 straight line and 2 
circles, has shown that E, as found from 4301, is only about 1% out, as the correct value is 
X = 2E = 5.66.

If 1 circle was used, we should satisfy 4318-19 and 4321 (with z - •§■). ms would give 
a = 33.8°, p = 25.2° and X = 6.15, which is about 8% out.

With 1 straight line, we would find P - 13.4° and X = 8.75. With 2 straight lines, we 
have Pi = - P2 - 30°, and by means of 4318-19, we would find ki - 2.26 and k2 = 0.26, giving 
X = 4.45. Finally, with 3 straight lines, we have Pi - - P3 = 30° and P2 = 0°, and by means of 
4318-20, we would find ki = 2.07, k2 = 0.63 and k3 = 0.07, giving X = 5.35. The latter result 
is only about 5% out.

It is worth noticing that 1 straight line, which is ‘‘kinematically admissible”, gives 
a greater X than the actual one, whereas 2 or 3 straight lines, which are “ statically admiss
ible”, give smaller values of X than the actual one.
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433. Defortati ons

S)/

We shall now try to investigate which movements of the wall are compatible 
with the deformations of the earth in a plastic zone. Incidentally, when we speak 
of deformations in the plastic state, we actually mean rates of deformations.

Fig.43C: Mohr's circle 

for deformations

First, we consider Mohr’s circle for defor
mations (Fig. 43C). As we assume incompressibility 
in the plastic state, the strains e (positive 
when they indicate contractions) must be measured 
from the centre of the circle. Further, we assume 
that the principal strains Ej and e2 occur in the 
same lines as the principal stresses. To the rup
ture-lines proper correspond then the points M 
and N in Mohr’s circle, and if we denote the max
imum shortening by em, we find in both rupture
lines the strain:

er = em sin <p 4322

whereas the change of the angle between the rup
ture-lines is:

err = 2em 008 ^ = 2er cot ^ 4323

which indicates also the change of the angle between a rupture-line and its nor
mal.

As a result, we can state that by any plastic deformation with <p 4= 0, both 
rupture-lines must shorten and the sharp angle between them must increase.

The displacement of a small earth element is characterized by its velocity 
vector u, which, for the lowest rupture-line, must be tangential to this line, 
u is assumed positive when it is directed against the shear stress from below. 
When the arch length s is assumed positive in the same direction, we have:

A complete quantitative investigation of the movements and deformations 
in a plastic zone lies outside the scope of the present work. We shall, therefore^ 
only make a few qualitative considerations. First, we consider the case of active 
pressure (Fig. 43D).

At any point of the lowest rupture-line we must have err ^ 0 (increase of 
the sharp angle between the rupture-lines) and u £ 0 (outward movement). As the 
rupture-line shortens, we must have u” < u’. Therefore, one limiting condition v 
is u” = 0. The other is e’rr = 0, to which corresponds a certain (positive) value
Of E”r.

For u” = 0, the rotation centre of the wall will be situated at the foot 
(point U2). To e” = 0 would correspond a rotation about the normal projection
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on the wall of the centre of the osculating circle (point P2). To e’rr = 0 cor
responds a rotation centre (point Ft) above F2. The actual rotation centre can, 
therefore, not be located between the points U2 and Ft. As we shall see later, it 
must be located within one of the shaded areas in Pig. 43D.

Fig.43E: Rotation centres 

for passive zone-rupture
Fig.43D: Rotation centres 
for active zone-rupture

Turning now to the case of passive pressure (Fig. 43E), we must, at any 
point of the lowest rupture-line, have err > 0 (increase of the sharp angle be
tween the rupture-lines) and u > 0 (inward movement). As the rupture-line short
ens, we must have u” > u’. Therefore, one limiting condition is u’ - 0, to which 
corresponds a certain (positive) value of u”. The other limiting condition is 
e^r = 0, to which corresponds a certain (positive) value of e”r.

For u” * 0, the rotation centre of the wall would be situated at the foot 
(point U2). To u’ = 0 corresponds a rotation centre (point Ui) below U2. To 
e”r = 0 would correspond a rotation about the normal projection on the wall of 
the centre of the osculating circle (point F2). To e’rr = 0 corresponds a rota
tion centre (point Pj), which is probably located below Ui. The actual rotation 
centre can, consequently, only be located between the points Ui and Plt and, as 
we shall see later, it must be located within the shaded area in Fig.43E.

In the special case of the rupture-zone being one single R-zone, (i.e., 
when the statically correct angles v’ and v” are equal), we can find the exact 
locations of the points U and P, because, for a straight rupture-line, we must 
have constant values of er and err. As r =®, the points Ft and F2 must both be 
infinitely distant, so that for active pressure the wall can rotate about any 
point below its foot. For passive pressure we have, corresponding to u’ = 0
(Pig. 43F): cos(j-i) 

sin(P-i) 6rker = h 4325 V
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As the angle between wall and rupture-line is 90° - (3 + j, the decrease of 
this angle can, by means of Mohr’s circle (Pig.43C), be found to be :

e f 1 s.1 -i
erw = ^err + emcos(2P-2j+<j>) - gin [^co's q> + cos(2p-2j+q>)J 4326 n/

The location of the uppermost rotation centre Ut can now be determined by:

u” cos(g-j) _ sin (p cos(j-i)'
he^ 2 sin(P-i) cos(3+tp-j) 4327

In another special case we can als 
indicate the exact location of the point 
U and P, viz., for friction less earth 
(cp = 0), because in this case the rup
ture-lines do not change their lengths 
(e_ = 0). This means that u is constant 
along the whole rupture-line, whereas 
err has different, but constant, values 
within each circular part of the rup
ture-line. However, the rotation of the 
pseudo-rupture-line , which is equal to 
err - u:r, is constant along the whole 
rupture-line. As we have rt = co at the 
surface, the rotation of the wall, cor
responding to = 0, must be zero, 
which means that the point Pi is infi
nitely distant. Corresponding to u’ =0, we have also u” = 0, and the point Ui 
coincides, therefore, with U2 at the foot of the wall. The final result is that 
the wall can rotate about any point below its foot.

It has already been mentioned that 6 and a should have the same signs as 
<P and c. This is only correct, however, if a corresponding tangential movement 
takes place between wall and earth.

For active pressure (Pig. 43D), this movement has the correct direction 
when the rotation centre for the wall lies either above the normal to the wall 
through Fi and to the right of the normal to the rupture-line through U2, or be
low the normal to the wall through U2 and to the left of the normal to the rup
ture-line through U2. As we always have |?N ' “n ' i * 0 f°r active pressure, it 
will be seen that 6 and a have the correct signs when the wall rotates “normally” 
only.

For passive pressure (Fig.43E), the movement has the correct direction 
when the rotation centre for the wail lies between the normals to the wall through 
Ui and Pi and to the left of the normal to the rupture-line through U2. This 
means that when the wall rotates “normally” only, 6 and a will only have the 
correct signs if Ppj " aN ‘ ^ * 0. The corresponding limiting value of 6 is found 
by putting v”- j = 0 in 3419:

Fig.43F: Rotation centres 
for passive R-rupture

cot 60 = 2 tan q> + cot <p or: 60 = V - <P 4328
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In the special case of frictionless earth (cp = 0), the limiting value of a 
is found by putting v"- j = 0 in 3420. This gives a0 = c, so that a will always 
have the correct sign when the wall rotates “normally” only.

For 6 < 60 we get the correct signs of 6 and a, but for 6 > 60, a contra
diction exists, and this must mean that a passive zone-rupture cannot occur in 
this case. The actual rupture-figure is probably of the type XfP (see Fig.35E).

Even when 6 < 60, we have seen that a passive zone-rupture can only occur 
when the rotation centre is located in the interval Ui - F! (Fig. 43E). If the 
rotation centre lies in the interval U2 - Ui, the actual rupture-figure is pro
bably of the type XfP, and if it lies below Fi or above F2 respectively, the ac
tual rupture-figure is probably of the type XfPfA or AfPfA respectively (see 
Fig. 35F).

44. RUPTURES LfR AND LaR 

441. Sloping Surface and Inclined Wall

We shall now proceed to show how an 
LfR- or LaR-rupture, with a straight R-line, 
can be calculated. These ruptures can occur 
for any roughness of the wall, as long as 
the R-zone does not touch the wall. In the 
special case of the statically correct 
angles v’j and vjj being equal, the R-zone 
can have any extension.

Fig.44A shows, in principle, a rup
ture LfR or LaR. As Nc = Ng = 1, we have 
3NC + 2Ng = 5 parameters and N + 2 = 4 
conditions, so that we must add a new con
dition in order to make the problem soluble. 
It will be natural here to have the R-line 
meet the surface at the statically correct 
angle. We have then:

a1 =0° Pi * vi 4401-02 V

where vi can be found from 3405. Further, 
4110-11 give for an:
ltd 1«
f-rupture: 32 = Pi - “2 4403 •/ 32

Fig.44A: Calculation of rupture LfR or LaR a-rupture: 32 = Pi - 0t2 + q>i + 90° 4404 V
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When x is given,
Ifti

we get from 4107:

44. Ruptures LfR and LaR

jt _ kg cos(Pg-ctg-j) 
h 2h sin a2

k2 - 2£h sin a2sec(P2-ag-j) 4405-06 'Z

Equations 4109 and 4105 give:
lot <»o

= h cos(j-i) - kgsin(gg-i) 
1 sin(Pi-i) 4407 V

(Ht+Hg) sin(6-j) - (Ut+Ug) cos(6-j) + ah cos 6 = 0 4408 (

The procedure is now the following, cti and Pi are given by 4401-02. With 
an estimated value of a2, we find the corresponding P2 from 4403 (f-rupture) or 
4404 (a-rupture), and then k2 and kg from 4406-07. After insertion of the per
taining formulae from Sections 32-34 in 4408, it is then investigated whether 
this equation is satisfied. If not, another value of ot2 is estimated and the pro
cedure repeated.

It must be remembered that for an f-rupture we have <Pi = <J>2 and c2 = c2, 
whereas for an a-rupture, we have cpi = - q>2 and c2 = - c2. In both ruptures,6 

and a should have the same signs as qp2 and c2. Finally, when the lower zone is 
an A-zone, a2 should be positive, whereas a2 should be negative for an X-zone.

If we find P2 - a2 - ,j < 0. we must use, instead of 4408, equation 
which, when inserted in 4403-04, yields for an:

f-rupture: «2 = 2 (Pi - j) P2 “ <*2 + j 4409-10 V

a-rupture: a2 = f (Pi - j + <Pi + 90°) P2 = a2 + j 4411-12\/

4106 ItøVj

which then give oc2 and p2 direct.
to(

If z is given instead of x, 4406 must be substituted by 4108.

When the geometrical parameters have been determined, we find the unknown 
statical quantities by means of 4113-14 and 4118:

iOI (02

E = (Hi+H2)cos j - (Ui+U2)sin j F = (Hi+H2)sin j + (Ui+U2)cos j 4413-14 V

Ez * |k2 [e sin(P2-j) + F cos(p2-j)] - - M2

+ |Hi(kiSin Pi + k2sin P2) + |Ui(kiCos Px + k2cos P2) 4415 1

From Fig. 44A, it may be seen that the R-zone will just touch the top of the 
wall when: (cvwft rdflAtenctf

wt + w2 _ ______ki
cos cpi cos(Pi+<Pi-i)

f % + cf,

4416 V
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This limiting condition can, by means of 3204 and 4406-07, be transformed 
to:

Calculation of Earth Pressures

« sin(Pi-HPi-j) cos(g2-a2-j)
2 sin a2 cos(|3i-p2+cpi) 4417

which indicates the lowest position of the rotation centre, for which the con
sidered rupture can occur.

With regard to the deformations, it is evident that the R-line must shorten. 
For a rupture LaR, this agrees with the assumed direction of the shear stresses, 
if there is active pressure in the R-line, but not in the case of passive press
ure. Therefore, strictly speaking, this rupture cannot occur with passive press
ure in the R-line (except for <p = 0).

For a rupture LfR, the shortening of the R-line can also take place with 
passive pressure in this line, provided that the rotation centre for the wall 
lies below a certain point, the location of which can be found in a similar way 
as used in the investigation of the rupture R (see Section 433).

442. Horizontal Surface and Vertical Wall

When i * j = 0, it will be most practical to consider hi and h2 as the un
known lengths. We find first by means of 4402, 4312 and 4315:

O'! lo°> tD°l
(?i = 45°- |q>i ti = p tan(45°+ + Ci 4418-19 7

Next, ti = ti is calculated by means of 3339 and 3217:

ti - (p + yhi) tan(450+ |cPi) + Ci 4420 V

The formulae 4403-04 are unchanged.
3 i

With the above values of Pi and ti, it will be found, by means of 3221, 
3223 and 3341, that V, = Gt + Pi, i. e.: U, = 0.

Considering this and inserting i = j = 0, the formulae 4405-08 and 4413-15 
are reduced to the following:

5 = — (1 + cot a2cot p2) 
2h

2£h hi h - h2 4421-23 V

(Hi+H2) tan 6 - U2 + ah = 0 E = H, + H2 F = U2 4424-26 7

Ez = |h2 (E + F cot P2) + ThHi - Mi - M2 4427 V

As to the calculation method, see Section 441. Instead of estimating a2 

and satisfying 4424, we can also start the calculation with 4409-10 (f-rupture) 
or 4411-12 (a-rupture), inserting j = 0. As to the criteria for a correct solu
tion, see Section 421.
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Example 44a

As an example, we shall consider the following case (Fig. 
44B) of a rough wall rotating about its middle point (rupture 
AaR):

i - j = 0 p = c = a = 0 q>2 = - <Pj,

Y = 1 h = 1 l « 4-

From 4401 and 4418-20 we get first:

30

Pi * 60° ti = 0 ti = 0.577 hi

gives:
We choose now to start the calculation with 4411-12. This 

ct2 = P2 = T (60° - 30° + 90°) = 60°

Fig.44B: Rough wall rotating 
about its middle point

h2 and hi are then found from 4422-23, after which 3217 
yields k2 and kt:

0.75 hi = 1 - 0.75 = 0.25

k2 = 0.75 : 0.866 = 0.866 k|

ki = 0.25 : 0.866 = 0. 288

ti * 0.577 X 0.25 = 0. 144

ki * 0.024

Next, we find by means of 3223-24, 3227-28 , 3325-26 and 3335, as well as Tables 1, 2 
(lower rupture-line) and 3 (upper rupture-line) in the Appendix:

MGi » 0.024 (- 0.083 x 0.866 + 0.083 x 0.866°) = - 0.001

Hi = 0.083 (0.25 - 0.25 x 0.5) = 0.010

MRj = 0.024 (0.063 x 0.866 - 0.036 x 0.5) = 0.001

G2 = 0.75 (0.205 + 0.25 x 0.866) = 0.316

MG2 = 0.649 (- 0.059 x 0.866 + 0.083 x 0.866°) = 0.002

G,2 = 0.288 x 0.866 x 0.866 * 0.5 = 0.108 »tø = 0

V2 = 0.75 (0.716 + 0.766 * 0) + 0.144 * 0.866 (- 0.516 * 0.866 + 4. 42 * 0.5) = 0.758

H2 = 0.75 (0.447 + 0.766 * l) + 0.144 * 0.866 (4.42 * 0.866 + 0.516 x 0.5) = 1.418

Mr = 0.649 (0.273 * 0.866 + 0.424 * 0.5) + 0.144 * 0.75 * 1.33 = 0.436

E, F and z are now found from 4425-27, using also 4102-03:

E_ = 0.010 + 1.418 = 1.43 = F = 0.758 - 0. 316 - 0. 108 = 0. 33 = tan 6

Ez = 0.5 * 0.75 (1.43 + 0.33 x 0.577) + 0.5 x 0.010 + 0.001 - 0.001 - 0.002 - 0.436 = 0.175

z = 0. 175 : 1.43 = 0, 12 * I) tan 5 = 0. 33 : 1.43 = 0. 23

As we find 6 < <p, it was thus correct to use 4411-12.



118 4, Calculation of Earth Pressures

45. RUPTURES LfP AND LaP 

451. Sloping Surface and Inclined Wall

In an LfP- or LaP-rupture, the 
exact shape of the plastic zone is not 
known. The lowest rupture-line may, as 
usual, be approximated by a number of 
circles and straight lines, but the 
boundary between the plastic and the 
elastic zones (which must be a rupture
line) is not straight, except in the 
special cases of y = 0, or p. - -e- - 0.

In order to overcome this diffi
culty and make a comparatively simple 
calculation possible, we shall assume 
that the plastic zone is shaped as a 
part of a complete P-rupture. corres
ponding to a wall height h°.

In the special cases of y = 0, 
or p = c = 0, the shape of the complete 
P-rupture is independent of h°, but in 
the general case the shape varies with 
h°. However, this variation is not very 
great. Therefore, if we determine the 
shape of the complete P-rupture for an 
estimated value of h°, we need not 
correct this later, except if the ac
tual h° should deviate very much from 
the estimated value.

Therefore, the first step is to 
estimate h° and carry out a calculation 
of the corresponding rupture P as de
scribed in Section 43. When this has

been done, we know all the geometrical parameters of this rupture (denoted by 
the superscript 0). In the actual rupture LfP or LaP, the angles are the same, but 
the lengths should be multiplied by a factor K. Consequently, we have (Pig. 45A):

Fig.45A: Calculation of rupture LfP or LaP

Pi ■ 3? P? + <*? - a2 kt = Kk? 4501-04

w2 + w9 = K(wS + wij) r2 - Kr2 h - h2 - h3 * K(h° - h? - h?) 4505-07

\
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lol »O'*
Further, we get from 4110-11 for an: 

f-rupture: P3 = P2 - “2 - «3 4508 7

a-rupture: P3 = p2 - a2 - a3 + q>2 + 90° 4509^

We draw now a straight line AB from the top of the wall to the point of 
intersection between the L- and the P-line (Fig. 45A). This line has a length b 
and makes an angle m with the wall. The triangle ABC gives:

h - h3

sin m cos(m+j-i) cos(j-i)
Si

By means of 4505-07 and 3203-04, we find from 4510:

4510 v

cot m = h° - h° - h° + 2r° sin a2 sin(P2-i) sec(j-i)
(w° + w°) cos(j-i) - 2r2 sin a2 cos(P2-j) 

Further, the triangle ABD gives:

+ tan(j-i) 4511

k3 _ h = b 
sin m cos(P3-m-j) cos(P3-j)

When x is given, we get from 4107, by means of 4512:

g _ x sin m cos(g3-a3-j) 
h 2 sin a3 cos(p3-m-j)

4512 ✓

4513 V

Inserting 4508 (f-rupture) or 4509 (a-rupture) in 4513 and solving for 
<x3, we find an equation of the form:

______________________________
cot «3 = £(cot m + tan u) - tan u - V^2(cot m + tan u)2+ (l-2£)sec2u 4514 <

where the angle u has the following value for an:

f-rupture: u = P2 - a2 - j 4515

a-rupture: u = 02 - a2 - j + <P2 + 90° 4516

From 4505-06 we find, by means of 3204, 4510 and 4512:

h sin m cos(P3-j) sec(p3-m-j)
(w° + w3) cos(j-i) - 2r° sin a2 cos(P2-j)

kt is given by 4504, and for k2 and k3 we obtain, by means of 3202, 4506 
and 4512 the expressions:

4517

k2 = 2KrS sin a k3 = h sin m sec(P3-m-j) 4518-19 V
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Hie procedure is now the following, a± and 0i are given direct by 4501-02. 
With an estimated value of a2, we find f*2 from 4503 and m from 4511. Further,
4514 yields a3, whereas 0S is given by 4508 (f-rupture) or 4509 (a-rupture). K is 
then found from 4517 and k1( k2 and k3 from 4504 and 4518-19. We now need only 
a statical equation to show whether a2 has been correctly chosen.

We might, as in the previous sec
tions, use 4105 for this purpose, but it 
is actually simpler, and at the same 
time more accurate, to consider the equi
librium of the earth mass bounded by 
the wall, the line AB and the L-line.
In order to do this, we must first de
termine the forces acting upon the line 
AB. Its length is found from 4512:

b = h cos(P3-j) sec((?3-m-j) 4520 V

At point B of the line AB act the 
stresses x^ and o^, which can be calcu
lated with the aid of Mohr’s circle 
(Fig.45B), when the stress t” has been 
determined by means of 3411 and 3318:

-r. = (t’2’ tan <p2 + c2sec <p2)cos(2f?2-2a2-2m-2j+cp2) 4521 'J

a. = (t2’ tan q>2 + c2sec <P2)sin(2(32-2a2-2m-2j+<p2) + (t2 sec <p2 + c2tan <p2) 4522 'J

The same equations can be used for determining the stresses xa and oa at 
point A of the line AB, »hen t’2 is substituted by t?0, which is determined as 
t2, but with all chord-lengths equal to zero. Further, a linear variation of the 
stresses in AB is assumed.

For the weight of the triangular earth wedge ABC (Fig. 45A) and its moment 
about the middle point of the chord k3 we have:

Ga * ?yw3(h - h3) cos(j-i) 4523 ̂

MGA = " °A [é-(h - h3) sin j + fw3 cos i - £k3 cos p3J 4524 V
By projection on a line perpendicular to the force E sec 6 we can now find:

H3 sin(6-j) - (V3 - G3 - Ga) cos(6-j) + ah cos 6 

+ ?b(ab+aa) sin(m+6) - ^(x^+xa) cos(m+6) = 0 4525

When this equation is satisfied, a2 has been chosen correctly.

It must be remembered that, for an f-rupture we have cpt = cp2 = <p3 and 
Ct = c2 = c3, whereas for an a-rupture, we have <Pi = q>2 = - <p3 and ct = c2 = - c3.

c, tan

Fig.45B: Mohr's circle
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In both ruptures.fi and a should have the same signs as q>3 and c3 (except in the 
initial calculation of the complete P-rupture, where they should have the same 
signs as qp, and Cj).

If we find g3 - ot3 - j < 0, we must, instead of 4525, use 4106 which, when 
inserted in 4508-09, yields for an:

f-rupture: a3 = ■§ (|32 - a2 - j) g3 = ot3 + j 4526-27 ■>

a-rupture: ot3 = ■§ (g2 - a2 - j + tp2 + 90°) g3 = a3 + j 4528-29v/

We start as usual with an estimated value of o2, which is correct when 
4513 is satisfied.

If z is given instead of x, equation 4514 must be substituted by the moment 
equation about the pressure centre.

When the geometrical parameters and the stresses in the line AB have been 
determined, we find the unknown statical quantities by projection on a normal to 
the wall, by projection on the wall, and by taking the moments about the middle 
point of the chord k3 :

E = H3 cos j - (V3- G3- Ga) sin j + sb(ab+oa) cos m + |b(Tb+i:a) sin m 4530v

P = H3 sin j + (V3- G3- Ga) cos j - 4-b(ab+oa) sin m + |b(xb+Ta) cos m 4531 «

Ez = §k3 [e sin(Pa-j) + P cos(g3-j)] - MR^ - - MGA

+ ibh(Tb+Ta) sin m + xbh(ob+aa) cos m - ^b2(ab-a&) 4532 v

With regard to the deformations, similar remarks apply as those made in 
connection with the ruptures LfR and LaR (Section 441).

452. Horizontal Surface and Vertical Wall

Por i = j = 0, the formulae 4511, 4513, 4517, 4523-25 and 4530-32 are re
duced to the following:

cot m = h° - h° - h° + 2r° sin a2 sin p2 

w° + w° - 2r° sin a2 cos g2
4533/

sin m cos(g3-a3) h sin m cos g3 sec(g3-m) 4534-35 V
2 sin a3 cos(g3-m) w° + w° - 2r° sin a2 cos p2

H3sin 6 - (V3

4539 v
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P = V3 - G3 - GA - |b(ob+aa) sin m + |b(xb+Ta) cos m 4540 v

Ez = ?k3(E sin 03 + P cos 03) - - MQA

+ |bh(xb+Ta) sin m + ibh(ob+oa) cos m - rjb* (°b'aa) 4541 v

The formulae 4501-03, 4508-09, 4514-16 and 4518-22 can be used as they are 
(with j - 0).

With regard to the calculation method see Section 451. Instead of using 
4514 and satisfying 4538, we can also start the calculation with 4526-27 (f-rup- 
ture) or 4528-29 (a-rupture), putting j = 0 and satisfying 4534. As to the cri
teria for a correct solution, see Section 421.

Example 45a

Fig.45C: Rough wall translating towards the earth

As an example, we shall con
sider the following case (Fig.45C) 
of passive pressure on a rough wall 
translating towards the earth (rup
ture SfP):

i = j = 0 p = c = a = 0 

<P3 = <P2 = <Pi = + 30°

Y = 1 h = 1 S. = 00

The corresponding complete rup
ture P has been calculated in Example 
43a, where we have found:

0° = 0° a2 = 0? = 30° k? = 2 k3 = w° = r° = 0.59

We choose to start the calculation with 4527 which, when inserted in 4534 with 5 - 
immediately gives a3 - 03 - 0°. With this value, 4526 yields 02 = d2, and 4503 gives then 
0(2=02 = 15°.

As all quantities with superscript 0 and subscript 3 are non-existent in this case, we 
find from 4533 and 4535:

cot m = 1 + 2 x 0. 59 x 0.2592
0.59 - 2 x 0.59 x 0.259 x 0.965 3.66 m = 15.3°

K = 0.263 x 1.036 = 0.9270.59 - 2 x 0.59 x 0.259 x 0.965 

We find now, by means of 4504 and 4518-20, that b = 1.036 and:

k, = 0.927 x 2 = 1.855 k2 = 2 x 0.927 x 0.59 x 0.259 = 0.284

k3 = 0.263 X 1.036 = 0.273 k3 = 0.074 k? = 0.020

As t’i = 0, we can find by means of 3318 and Table 2 in the Appendix:
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tV = t’2 = 1.855 ( 0.866 x 0.5 + 0.5 x 0.866) = 1.605

tV = tV = 0.284 (1.17 x 0.259 + 0.718 x 0.965) + 1.605 x 1.83 « 3.23

We have, of course. Ta = a - 0. whereas 4521-22 yield:

Tfa = 3.23 x 0.577 x i. 000 = 1.87

ab = - 3.23 x 0.577 x 0.010 + 3.23 x 1.155 = 3.71

As 0(3 = 03 = 0, we have G3 = 0 and Mq = 0 according to 3223-24. By means of 4536-37, 
3325-26 and 3335, we get, using also Table 1 in the Appendix:

Ga » 0.5 x 0.273 x 1 = 0.137 = - 0.167 x 0.273 x 0.137 = - 0.006

V3 = 0.074 (0 + 0.25 X 0.866) + 3.23 x 0.273 x 0.866 = 0.782

H3 = 0.074 ( 0.25 - 0.25 x 0.5) + 3.23 x 0.273 x 0.5 “ 0.452 11^ « 0.020 x 0.036 = 0.001

We can now insert into 4539-41:

JS = 0.452 + 0.5 x 1.036 x 3.71 x 0.963 + 0.5 x 1.036 x 1.87 x 0.263 = 2.57 = |X

F = 0.782 - 0.137 - 0.5 x 1.036 x 3.71 x 0. 263 + 0. 5 x 1.036 x 1. 87 x 0.963 = 1.07 = |X tan 6

Ez = 0.5 X 0.273 x 1.07 - 0.001 + 0.006 + 0.25 x 1.036 x 1.87 x 0.263 
+ 0.25 x 1.036 x 3.71 x 0.963 - 0.083 x 1. 036*x 3.71 * 0.873

_z = 0.873 : 2.57 = 0.34 = T) ten 6 = 1.07 : 2.57 * 0.42

As we find 6 < cp, it was thus correct to use 4526-27. 46

46. OTHER COMPOSITE RUPTURES 

461. Ruptures ZfL and ZaL

In order to calculate a ZfL- or ZaL-rupture we must assume, as in Section 
45, that the plastic zone is shaped as a part of a complete rupture P (or R). 
Moreover, we have here h° = h and K * 1, so that all parameters of the complete 
plastic rupture (denoted by the superscript 0) are known. Consequently, we have 
(Pig. 46A):

ot3 - a° p3 =3° 3* = 0° - a° + as 4601-03

k3 = k3 r2 = r° h1 + h2 = h - h3 4604-06

Further, we get from 4110-11 for an : 

f-rupture: 3i “ 02 + “2 + “1 4607

0i = 32 + a2 + at + cp2 - 90°a-rupture: 4608



124 4. Calculation of Earth Pressures

By means of 3202 and 4605-06 we can find:

k2 = 2r° sin ot2 (h - h°) cos(j-i) - k2 sin(g2-i) 
sin(3i-i) 4609-10 n/

Fig.46A: Calculation of rupture ZfL or ZaL

If z is given, we must satisfy 
the equations 4105 and 4108, which can 
only be done by trial. We estimate va
lues of at and a2, find g2 from 4603,
Pi from 4607 (f-rupture) or 4608 (a- 
rupture) and k2 and k2 from 4609-10.
We then investigate whether 4105 and 
4108 are satisfied.

It must be remembered that, for 
an f-rupture we have <p3 = <p2 = cp,, and 
05=02 = 0!, whereas for an a-rupture, 
we have q>3 = q>2 = - <p, and c3 = c2 =
- Ci. In both ruptures,6 and a should 
have the same signs as cp3 and c3.

If x is given, we are in general 
confronted with the difficulty of not 
being able to indicate a relation be
tween the movement of the wall and 
that of the elastic zone without in
vestigating in detail the deformations 
of the plastic zone.

However, in the special case of frictionless earth (cp = 0), we can solve 
the problem, because in this case we have found in Section 433 that the velocity 
vector u as well as the rotation of the pseudo-rupture-line err - u: r is constant 
along the whole P-line.

For an a-rupture, the velocity vectors in the P-line must be zero when 
cp = 0, which means that we can only have x = 0. For an f-rupture we get, as 
eri. = 0 in the elastic zone:rii

e rr3
u
r3 'rr2

iL = u 
r2 r. 4611

The decrease of the angle between wall and rupture-line can be found by 
putting cp = 0 and em = ?err in 4326 and, at the same time, substituting g (for 
the straight rupture-line in Fig. 43F) by p3 - ct3 (for the circular one in Fig. 46A):

Erw = err3 cos2 (3a-a3-j) 4612

The rotation of the wall can now be expressed in two different ways (Fig. 
46A), giving the equation:

u^ u cos(p3-a3-j)
fcrw r; -x 4613
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By elimination

X m 
x

Using 3201 and 
which we can find:

of and e from 4611-13 we find: rw rr3

[— +— tan2(P3-a3-j) cos(P3-ot3-j) 4614
L ri r3 J

inserting 4610 and 4607 in 4614, we get an equation, from

cos(2a!+p2+a2-i) = cos(02+a2-i)
- f(h-h3)cos(j-i) - k2sin(P2-i) J ■ -sec(P3-a3-j) —stan (P3-a3-j) r3

4615

When we have an f-rupture, frictionless earth and a given x, we estimate 
first a value of a2. We find then p2 from 4603 and k2 from 4609. Next, 4615 gives 
the corresponding ai, 4607 yields p, and 4610 kt. We then investigate whether 
4105 is satisfied. If not, a2 must be changed and the calculation repeated.

When the geometrical parameters have been determined, we find the unknown 
statical quantities E, P and z by means of 4113-15 or 4116-18.

Example 46a

Fig.46B: Rupture PfA 

for frictionless earth

As an example, we shall consider the following 
case (Pig.46B) of passive pressure on a rough wall 
in frictionless earth (rupture PfA):

i = j= 0 p = 0 y = 0 cp = 6 = 0

c = a = + 1 h = 1 g = 2.2

From Prandtl’s investigations (Section 223) 
it is known that the complete rupture P is as shown 
in Fig. 35B (right). Consequently, we have:

a? = 0 0? = 45° a? = PS = 22.5°

r2 = 1 h° = 0

After some trial we find that we must have 
«2 - 16.3°. With this value 4603 gives P2 = 16.3°, 
whereas 4609 yields:

k2 = 2 * 1 * 0.280 « 0.560 k! = 0.315

As in this case the rupture-line consists of 
two circles only, we must substitute P3 and a3 in 
4615 by 02 and a2. We get then:

cos(2ai+ 32.6°) = 0.842 - (1 x l - 0.560 x 0.280) : 2.2 = 0.459 at = 15.0°

Next. 4607 yields pt = 47.6°, whereas 4610 gives:

kj = (1 X 1 - 0.560 X 0.280) : 0.739 = 1.140 kf = 1.300

We can now find, by means of 3414, 3350, 3353-54 and 3359, using Table 1 in the Appendix: 

a1! = cotfPj+aj) = 0.517 o’l = a*2 = t?-+ ai = 1.045 + 0.517 = 1.562
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Vi = 1. 140 (- 0. 954 * 0. 739 + 0. 524 * 0. 673) + 1.140 x 0. 517 * 0. 673 = 0. 00

Hi = 1.140 ( 0.524 X 0.739 + 0.954 x 0.673) + 1.140 x 0.517 x 0.739 « 1.61

V2 ' 0.560 (- 0.946 x 0.280 + 0.569 x 0.959) + 0.560 x 1.562 x 0.959 = 1.00

H2 = 0.560 ( 0.569 x 0.280 + 0.946 x 0.959) + 0.560 x 1.562 x 0.280 = 0.84

MRj = 1.300 x o. 174 = 0.226 = 0.315 x o. 188 = 0.059

We can now show that 4105 is satisfied, as in this case it is reduced to:

- Vi - V2 + ah = 0 - 0.00 - 1.00 + 1 x i = 0

Finally, we get. by means of 4113-14 and 4118:

_E = Hi + H2 = 1.61 + 0.84 = 2.45 = K F = Vi + V2 = 0.00 + 1.00 = 1.00 = a

Ez = ik2(E sin |32 + F cos P2) - MRj - + -jVi(ki COs f?i + k2 cos fe) + ihHi »
0.5 x 0.560 (2.45 x 0.280 + 1.00 x 0.959) - 0.226 - 0.059 + 0.5 x 1 x i. 61 = 0.981

z = 0.981 : 2. 45 = 0.40 = C

462. w- Ruptures

Fig.46C: Calculation of w-rupture

In an ordinary w-rupture 
the lower zone (subscript 2) is 
always an A-zone, whereas the up
per zone (subscript 1) may be of 
the type R. P or X. In the last 
case, the centres of the two cir
cles must be situated at the same 
normal to the wall (Fig.46C). We 
must always have <pt = - <p2 and 
ct = - c2. Further, 6t and at 
should be given the same signs as 
<Pi and cit whereas 6a and a2 
should have the same signs as cp2 

and c2.

When x is given, we have at 
once h2 = k2 = 2x and hi = h - 2x. 
The upper zone is now calculated 
first as an ordinary zone- or line- 
rupture, in the latter case with 
a given = - x : ht.

When this is done we can 
determine the stress ti at the 
upper point of the lower rupture
line hy means of 342 8, provided

62
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that we know 6, and a2, which we do when a2 * 90°. Hie lower zone is now calculat
ed as a line-rupture with £2 = and P2 = 90° + j. The total earth pressure on 
the wall is given by the equations:

E = Ej + E2 F = F, + F2 Ez = Et(zt + h2) + E2z2 4616-18

Of the special w-ruptures (Section 355) shown in Pig. 35G, rupture wAw is 
kinematically impossible, whereas wA and wX cannot occur in homogeneous earth, 
with the exception of wX in the special case of the wall being a tangent to the 
circle. For the remaining ruptures there must, for kinematical reasons, always be 
passive pressure in the rupture-line. Finally, the centre of rotation for the wall 
is, for the ruptures wR and wP, located at the point where the lowest rupture-line 
meets the wall, whereas for the rupture Aw it is situated at the normal through 
the centre of the circle.

When x is given, we know, therefore, at once the height of the rupture-zone 
and can calculate it as an ordinary zone- or line-rupture. The only irregularity 
is presented by the rupture Aw, because here the rupture-line does not touch the 
surface but starts at the free earth front. This means that, in using the formu
lae from Section 342, we should not insert the actual values of i and p for the 
ground surface, but must put i = 90° + j and p = 0, corresponding to the free 
earth front. Further we have, of course, p = 90° + j in this rupture.

Example 46b

Fig.46D: Rupture AwR 
for smooth wall

As an example, we shall consider the following case (Fig.46D) 
of a smooth wall (rupture AwR):

i = j = 0 p = c = a = 0 <Pi = - <P2 = + 30°

6 = 0 y = 1 h = 1 £ = 0.4

We find at once:

k2 = h2 = 2 X 0.4 = 0.8 h? = 0.64 h2 = 0.512

h, = 1 - 0.8 = 0.2 g2 = 90° £2 = l

The upper zone is a Rankine-zone corresponding to ordinary pas
sive pressure on a smooth wall (Fig.22B, right). We have here:

a, =0° Pi = 45° - £<p, =30° k, = 0.2 : 0.5 = 0.4

Ei = iyhf tan2 (45°+ fcPt) = 0.5 x 0.22 * 3 = 0.060 zt = $hi = 0.067

As t) = 0 we get by means of 3339 and 3428:

ti’ = 1 x 0.4 * 0.866 = 0.346 t2 0.346 0,866 cos(a2+60°)
0.5 sin a2

cos(a2+60°)
sin a2

a2 must be determined by trial, so as to satisfy 4213, which in this case is reduced to 
the simple form: G2 = V2. After some trial we find with a2 = 58.6°, using 3223-24, 3325-26 and 
3335 as well as Tables 1 and 3 in the Appendix:

th = 0. 6 x 0.478 : 0.853 = 0.336



128 4. Calculation of Earth Pressures

G2 = 0.64 x 0.198 = 0.127 M~ = 0.512 (- 0.060 + 0.083) = 0.012
u2

V2 - 0.64 ( 0.075 + 0.116 * 0.866) + 0.336 x 0. 8 * 0.054 = 0.127 

H2 = 0.64 (0.157 + 0.116 x 0.5 ) + 0.336 * 0.8 x 0.398 = 0.245 

= - 0.512 x 0.039 - 0.336 x 0.64 x 0.118 = - 0.045 

As we find G2 = V2. <X2 has been chosen correctly. 4214 and 4216 give then:

E2 = 0.245 E2z2 = 0.5 x 0.8 x 0.245 + 0.045 - 0.012 * 0.131

Finally, we get by means of 4616 and 4618:

_E_ = 0.060 + 0.245 = 0, 305 =

Ez = 0.060 (0.067 + 0.8) + 0.131 = 0.183 z = 0.183 : 0.305 = 0.60 = T)

463. s-Ruptures

Fig.46E: Calculation of s-rupture

earth front is acted upon by the known forces Et and F 
case extended to:

With two exceptions, 
which shall be mentioned 
later, the calculation of 
an s-rupture (Fig. 46E) is 
only possible, when the 
heights h, and h2 are given.

With the same excep
tions it is kinematically 
necessary that the wall is 
provided with a hinge (ac
tual or yield) between the 
two parts.

We shall first con
sider the simple case of 
an LsZ-rupture. Hie upper 
zone is calculated first 
as an ordinary zone-rup
ture. When this has been 
done we can calculate the 
whole rupture in principle 
as an ordinary line-rup
ture with a given 5=x:h. 
The only difference is 
that the upper part of the

i. Equation 4204 is in this 
10M

siEj sin 62 - (Pi+a2h2) cos 62 - H sin(62-j) + (V-G-P) cos(62-j) = 0 4619
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m
This equation, together with 4202, determines a and 3 for the lowest rup

ture-line. If we find 3 - <* - j < 0, we must use 4205-06 instead. E, P and z 
(for the whole wall) are calculated by means of 4207-09, after which E2, F2 and

104
z2 (for the lower part only) can be found from 4616-18.

As regards the deformations, the rotation centre for the lower part of the 
wall must be located at the normal to the wall through the centre of the lower 
circle, i.e. for "normal” rotations at point C (Pig. 46E). The rotation centre 
for the upper part can be located anywhere between C and point B, where the upper 
circle meets the wall. It is here presumed that there is passive pressure in the 
one circle and active pressure in the other; if there is either passive or active 
pressure in both circles, the rotation centre for the upper part can be located 
anywhere except between points B and C.

Next, we shall investigate a ZsL-rupture, which is considerably more com
plicated. In this case we do not know the shape of the lower rupture-line nor 
that of the upper one, but if these were known we could calculate the total earth 
pressures Et and P4 on the upper part as well as the unit pressures e^and ef at 
the top and foot of the lower part. We shall here as an approximation assume
each of the mentioned rupture-lines to consist of one circle and we shall, more
over, assume a linear variation between e^ and ef , which means that E2 and z2 
are given by 4301-02 (with subscript 2). 2

Under these assumptions, the problem is soluble if the location of the 
upper pressure centre zt is given. Hie two parameters of the upper circle (alf 
3i) can then be found as for a line-rupture with a given z, i.e. usually by means 
of 4108 and 4204. Those of the lower circle (a, 3) can, after this, be determined 
by means of 4619 and the following equation, which corresponds to 4306:

E1(z1-z2+h2) + H(z2cos j - |k sin 3)

- (V-G-P) (z2sin j + |k cos 3) + MR + MG+Mp = 0 4620

From 4619-20 we must find a and 3 by trial. We estimate a value of a, find
the corresponding 3 from 4619 and investigate whether 4620 is satisfied. If not, 
a must be changed and the calculation repeated. In the case of active pressure 
a very good approximation is obtained by assuming a straight lower rupture-line, 
in which case we disregard 4620 and find 3 from 4619 with a • 0; for homogeneous 
earth, this gives the same 3 and ef as found in Coulomb’s theory.

When a and 3 have been determined, E2 and z2 must be found from 4301-02, 
as otherwise serious errors may be introduced. E, P and z for the whole wall are 
calculated finally by means of 4616-18.

As regards the deformations, the rotation centre for the lower part of the 
wall may, as described in Section 433, be located within a certain interval be
low the foot of the wall (passive pressure) and possibly also in an interval 
above the top of the wall (active pressure). The limits of these intervals, as 
well as the actual location of the rotation centre for the upper part, cannot 
be indicated without a detailed investigation of the deformations in the plastic
zone.
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Such an investigation is, strictly speaking, also necessary if we are to 
calculate a rupture ZsL with a given rotation centre for the upper part. In order 
to circumvent this difficulty, we shall assume that the upper rotation centre is 
situated at point Ct (Pig. 46E), but this is evidently an approximation only.

Under this assumption we calculate first the two parameters of the upper 
circle (alp 04) as for a line-rupture with a given £, * Xi:hi, i.e. usually hy 
means of 4202 and 4204. Those of the lower circle (a, 0) are then found from 
4619-20, after which 4301-02 give E2 and z2, whereas 4616-18 yield E, P and z.

Example 46c

As an example, we shall consider the following case 
(Fig.46F) of active pressure on a rough wall, in which a 
yield hinge has developed (rupture PsA):

i'j=0 p = c = a = 0 1> = <Pi = = 62 = - 30°

Y * 1 h = 1.7 hi - 1 h2 -0.7 Si * 1

The rupture A corresponding to the upper zone has 
been calculated in Example 42a, where we have found:

dt = 26.5° 0i " 63.5° kt = 1. 117

Ei = 0.142 Fi = - 0.082 z, * 0.45

et is then determined by means of 3318 (with ti = 0) 
and 3423, using also Table 3 in the Appendix:

ty = 1.117 (0.506 X 0.895 - 0.350 x 0.446) = 0.332 

et = 0.332 x 0.866 x 0.799 : 0.920 = 0.250L2
Fig.46F: Rupture PsA 

for rough wall
As regards the circle bounding the lower zone, cl and 

3 should satisfy 4619-20, which in this case are reduced to:

V - G - H tan 6=0 Ei(Zi-Z2+h2) + H(Z2-2h) - fh(V-G)cot 0 + MR + MG = 0

The former of these give, after insertion of 3223 and 3325-26:

(Vyx- i cos 2J>) sin(20+2<P) + (- Hyytan 6 + j sin 27>) cos(20+2P) + (Vyz- Hyztan 6 - Gyz) = 0 

After some trial we find with a - 15.0°. using Tables 1 and 3 in the Appendix:

(0.206 - 0.25 x 0.5) sin(20-6O°) + (- 0.206 x 0.577 - 0.25 x 0.866) cos(20-6O°)

+ (0.033 + 0.207 x 0.577 - 0.044) » 0.081 sin(20-6O°) - 0.335 cos(20-6O°) + 0.109 = 0

which, with the aid of 3406-07, yields 0 = 59.0°. With this value we find:

k = 1.7 : 0.857 = 1.98 k2 = 3.94 k3 = 7.80

We get now, by means of 3318, 3423 and 4301-02 (with subscript 2):

t" = 1.98 (0.640 x 0.857 - 0.392 x 0.515) “ 0.685
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ef2 ' 0.685 x 0.866 x 0.719 : 0.960 = 0.445 = 0.5 x 0.7 (0.445 + 0.250) = 0,243

E2z2 = 0.167 x 0.7s(0.445 + 2 x 0.250) = 0.077 z, = 0.077 : 0.243 « 0.32

Further we find, using 3223-24, 3325-26 and 3335:

G = 3. 94 ( 0.044 + 0. 25 x 0.883) = 1.04

Mq= 7.80 (-0.082 x 0.857 + 0.083 x 0.8573) * - 0.14

V = 3.94 (0.033 + 0.206 x 0.848) = 0.82

H = 3.94 (0.207 - 0.206 x 0.530) = 0.39

M = 7.80 (0.029 X 0.857 - 0.020 x 0.515) = 0.12

We can now show that 4620, as indicated above, is satisfied:

0.142 (0.45 - 0.32 + 0.7) + 0.39 (0.32 - 0.5 x 1.7)

- 0.5 x 1.7 (0.82 - 1.04) 0.601 + 0. 12 - 0.14 = 0

If we had put a = 0, 4619 would have given 3 = 54. 4°(the Coulomb value). To this would 
correspond ef = 1.7 x 0.257 = 0.437, which deviates only slightly from the value found above 
(0.445). 2

There are two special cases, in which the location of the rotation centre 
(for a rigid wall) and the heights hi and h2 are not given, but are found by the 
calculation proper. Both cases concern earth with cohesion, allowing part of the 
earth front to stand unsupported, \tfiile the wall moves away from it.

The first of these cases concerns the rupture ZsL with an unsupported upper 
earth front. We have then Ei = Ft = 0, in which case the equations 4207-09 give:

H! = 0 Vt - Gi - Pi = 0 MRi + Mq + MPi = 0 4621-23

From these equations it is possible to find alt and kt. The plastic zone 
is then calculated as described above.The rotation centre for the rigid wall can 
be located in the usual intervals found for a zone-rupture (compare Section 433).

The second case concerns the rupture LsZ with an unsupported lower earth 
front. We have then = F2 = 0, in which case equations 4207-09 and 4616-18 give:

Ei - H cos j + (V-G-P) sin j = 0 F, - H sin j - (V-G-P) cos j = 0 4624-25

Ei(Zi+h2) - §k [Ei sin(P-j) + Ft oos(P-j)] + MR + % + Mp = 0 4626

In general, we must start by estimating a value of hi and calculating the 
corresponding values of Ei, Fi and Zi as for an ordinary zone-rupture, a and 3 
for the line-rupture are then found from 4624-25 and it is finally investigated 
whether 46 26 is satisfied. If not, hi must be changed and the calculation repeat
ed. The rotation centre for the rigid wall can be located anywhere between the 
points B and C (Fig.46E).
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47. EABTH PRESSURE DISTRIBUTION

471. Introduction

As already pointed out in several instances, we can calculate the unit earth 
pressure e at any point, where a rupture-line meets the wall, but not at any other 
point.

In a zone-rupture, a rupture-line meets the wall at any point and we can, 
therefore, in principle, determine the earth pressure distribution completely. In 
practice, we usually calculate ef (at the foot) and et (at the top) only and as
sume a linear variation.

K0^>
For e^ (at an arbitrary depth d) we have the formal equation 4122, and, by

means of 3318 and the boundary conditions, it will be possible to determine theOrconstants and in any given case. However, as these constants are func
tions of the geometrical parameters which, in turn, depend upon the ratio p : c 
: yh, the said constants will vary with this ratio. This means that the law of 
superposition is usually not valid in earth pressure calculations.

In a line-rupture only one rupture-line meets the wall, viz. at the foot. 
Although we can thus calculate e^, this is of no great advantage, as we cannot 
find e at any other point. The same difficulty exists in most composite ruptures, 
at least for a part of the wall. We know, however, the total earth pressure E and 
the hei^it z of its pressure centre.

For E and Ez, we have the formal equations 4119-20, and by means of two 
suitable equilibrium conditions, it will be possible to determine the 6 constants 
X, p, k, t\, 9 and C in any given case. However, for the same reasons as given 
above, these constants will vary with the ratio p : c : yh, and even for a given 
ratio the solution is not unique, because other equilibrium conditions will give 
a different set of constants. Therefore, we know actually only E and z (as well 
as e^).

As long as we are concerned only with the stability of a structure, we need 
not know the distribution of the earth pressure, but if we are to investigate the 
stresses in the structure proper, we must know the earth pressure distribution, * 472
at least approximately.

Although this problem cannot be solved tay means of the plasticity theory, 
we shall in the following indicate a simple, tentative pressure distribution, 
which may be used as an approximation in the absence of more exact information.

472. Signs for Rotations and Shear Constants

In Section 331 (p.58) we have defined the concepts of passive and active 
pressure in a rupture-line and have decided to use positive values of tp and c 
for passive pressure and negative values for active pressure.
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In the case of a line-rupture, a zone-rupture, or a composite f-rupture, 
we have either passive or active pressure in the whole rupture-line. Therefore, 
in these cases we can also speak of passive or active pressure on the wall with
out giving rise to any misunderstanding.

However, in the case of a composite a- or w-rupture, we have passive press
ure in one part of the rupture-line and active pressure in another. Consequently, 
we cannot speak of passive or active earth pressure on the whole wall in these 
cases.

Instead, we shall introduce a new concept, viz. positive or negative rota
tion of the wall. A positive rotation is one in which the angle (through the 
earth) between the wall and the original ground surface is increased. In a nega
tive rotation this angle is decreased. Further we decide that c, when used in 
equations such as 4119-25, should always be assumed positive.

473. Pressure Diagrams for Rigid Walls

A general earth pressure diagram must, of course, fulfil the condition 
that, in the limiting cases of passive and active zone-ruptures respectively, the 
correct pressure distributions are obtained. For these zone-ruptures we have, re
spectively:

eP = Yd\P + ppP + ckP = ydXp + e^ 4701

e| = yd\a + PPa + cica « yd\a + ea 4702

Further, the area of the normal pressure diagram must be equal to E, and 
its pressure centre must be located at the height z above the foot of the wall.
As previously mentioned, we also know the actual e-f, but it would not make the 
pressure diagram as a whole appreciably more correct to compel it to give the 
correct value of e^, and it is much simpler to disregard this requirement.

Consequently, the pressure diagram should involve 2 variables only. The 
simplest diagram, which fulfils this requirement and conforms also to both limit
ing cases, is the one shown in Fig.47A for positive rotation (left) and negative 
rotation (right). The wall is shown vertical, but may as well be inclined.

The pressure diagram is constructed as follows: First we draw two straight 
lines corresponding to the passive and active zone-ruptures respectively, and in
tersecting each other at a point 0.

Now, a pressure jump is assumed to occur at a height y = wh above the foot 
of the wall. Above this point we have , as a rule, ordinary passive pressure 
ex = eP (positive rotation) or active pressure ex = ea (negative rotation). Be
low the point we have a kind of active pressure e? (positive rotation) or passive 
pressure e? (negative rotation), varying in such a way that the corresponding 
contour line of the diagram passes through point 0. Thus we have, above and below 
the pressure jump respectively:
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Neq Rot.

pressure diagrams for rigid walls

V
= yd\x + ppx + ckx = ydXx + ex 4703

y
= ydXy + ppy + cKy = ydXy + 4704

where Xx, px, kx and ex are usually identical with Xp, pp, kp and e^ in the case 
of positive rotation, and with Xa, pa, Ka and ea in the case of negative rotation. 
(An exception is made in Section 511, however).

Point 0 is situated at a height K above the top of the wall, determined by:

■ e? ' et „ et ~ ^
Y (\P - Xa) y (Xx - Xy)

4705

As the pressure diagram should give the correct values of E and z, we must
have:

E = he£ + (h-y)(ex-e^) + £yh2Xy + ?y(h-y )2 (Xx-Xy) J 4706

Ez - |h2e^ + l(h2-y2)(ex-ey) + Iyh3Xy + |y(h-y)2 (h+2y) (Xx-Xy) 4707

Eliminating e^ and Xy from 4705-07, we can find the following second-degree 
equation in the unknown quantity h - y + K:

E(3z-h-K) - he?(*h-K) + jyh2XxK
(h-y+K)2 + \ (h-y+K + h+K) ------------------- z - - Y------------ = 0 4708

E - hex - |yh2Xx

When y has been found from 4708, we can calculate Xy by means of 4705-06 
(eliminating e|) and, finally, e^ by means of 4705:
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„ Y E - he* - jyh2Xx v v v Y
Xy = Xx + -—t—r?--------  e? = e£ + yK (Xy - Xx) 4709-10yy (h - 2y + K) z z

In the special cases y = 0 or Xp = Xa the preceding formulae cannot be 
used direct, because 4705 gives K = ra. However, as point 0 is infinitely distant, 
we must have: \x= Xy= Xp= Xa. Further we find, from 4706-07:

2Ez - h2ex - jyh3Xx v .
y = E - hex - lyh2Xx 3 * et + f <E * het - Xx) 4711-12

A pressure diagram of the proposed type can be determined for most of the 
simple ruptures, such as R, P, A, AaR, AaP, AwR and PfA, which are most commonly 
used. However, for some other ruptures (e. g. X, XfP and AwXfP) it cannot always 
be used, as 4708 may give values of y outside the possible interval 0 i y £ h.

Example 47 a

In Example 42a we have found, for a case of positive rota
tion of a rough wall (rupture A): E = 0. 142 and Ez = 0.064.

The corresponding passive zone-rupture has been calculated 
in Example 43a, where we have found XP - 5.61 and eP = 0. We have 
not calculated Xa, but we know that ea = 0. With these values 4705 
gives K - 0, and we have: Xx = 5.61, ex = e^ = 0 .

For y = 1 and h = 1 we find, from 4708-09:

(1-y)2 + ?(l-y+D 3 X 0.064 - 0. 142 
0. 142 - 0.5 x 5.61

(1-y)2 - 0.010 (1-y) - 0.010 = 0 y = 0.895

Fig.47B: Pressure diagram 
for rough, rigid wall

^y 0.142 - 0.5 X 5.61
— 5-61 0.895 (1 - 0.5 x 0.895) 0.22

The corresponding pressure diagram is shown to scale in Fig. 47B. 474

474. Pressure Diagrams for Hinged Walls

When a yield hinge develops in a wall, the rupture-figure will usually be 
of the s-type, and in that case the tentative pressure diagrams described above 
must be modified somewhat.

We shall first consider a rupture LsZ (Pig.47C). Above the hinge we have 
ordinary passive or active pressure, and below the hinge, a pressure diagram 
similar to the one described in Section 473. The latter diagram, which should 
correspond to E2 and z2, is determined by means of the formulae 470 5 and 4708-10 
(or in special cases 4711-12) with subscripts 2. The pressures e^ should, of 
course, correspond to the depth hi below the ground surface.

Another method of solving this problem approximately, will be to assume 
the ground surface to pass through the hinge but to retain its correct slope.
The weight of the earth above this imaginary surface is then considered as an ad
ditional surcharge. In this case the pressure diagram for the lower part is de
termined as for an ordinary rigid wall with height h2.

i
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K.-K

Fig.47C: Pressure diagram for rupture LsZ Fig.47D: Pressure diagram for rupture ZsL

Turning now to the rupture ZsL (Pigs. 46E and 47D) it is evident that the 
pressure diagram for the upper part should be determined as for an ordinary rigid 
wall with the height ht. As regards the lower part, we have shown in Section 463, 
how the actual pressures ets and ef^ can be calculated.

However, we shall now indicate a much simpler method of determining the 
pressures on the lower part with sufficient accuracy. We simply assume e^ to be 
equal to e^ for the upper part, and further ef to be equal to the corresponding 
value for a complete zone-rupture. Between these values a linear variation is 
assumed (the dotted line in Fig.47D).

Example 47b

In Example 46c, we have found, for a case of a rough wall 
with a yield hinge (rupture PsA): E2 = 0.243 and z? = 0.32.

The upper part of the wall has been calculated in Example 
42a, and the corresponding pressure distribution has been deter
mined in Example 47a, where we have found K7 = 0.22. Consequent
ly we have, as y = 1 and hi = 1:

etj = e|i = 0.22 x 1 x 1 = 0.22

The complete active zone-rupture for a rough wall has not 
yet been calculated but, as shall be shown in Section 523, we 
find for <p = 6 = - 30° the value Xa = 0.266. This gives, as 
h = 1.7:

e„ = 0.266 x 1 x 1.7 = 0.45 
12

For the total earth pressure on the lower part of the 
wall, we find:

Ez = 0.5 x 0.7 (0.45 + 0.22) = 0.235 

E2z2 = 0.167 x 0. 7S(0.45 + 2 x 0.22) = 0.073 

^2 = 0.073 : 0.235 = 0.31 

which is a sufficiently close approximation. The pressure diagram is shown to scale in Fig. 47E.

Fig.47E: Pressure diagram 
for rough, hinged wall

i
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51. MAIN CASES AND MODEL TESTS 

511. Most Important Cases

In the present Section 5 we shall consider exclusively the simple but im
portant special case of a vertical wall (j = 0) and a horizontal surface (i = 0). 
Further, we shall take h = 1, in which case we will have x = £ and y = w.

The main object of the investigation is to determine the earth pressure on 
the wall for any possible location of the rotation centre. With regard to the re
lative roughness of the wall we shall consider the two extreme cases of a perfect
ly smooth wall (6 = 0, a = 0) and a perfectly rough wall (6 = <p, a = c). In the 
latter case we shall, however, consider “normal" rotations only, i.e. rotation 
centres located at the wall proper or its extensions.

In the general case the earth has a friction angle cp, a cohesion c, an ef
fective unit weight y and a surcharge p. However, we shall here consider the 
following special cases separately:

1) Frictionless Earth (cp = 0, c = 1, y = 0, p = 0). From 4119-21 it will 
be seen that we have then E = k., z = C and F = a.

2) Weightless Earth (cp * 0, c = 0, y = 0, p = 1). From 4119-21 it will be
seen that we have then E = p, z = é and F = p tan 6P.

3) Cohesionless, Unloaded Earth (cp 4 0, c = 0, y = 1, p = 0). From 4119-21
it will be seen that we have then E = f\, z = and F = |-X tan 6Y.

All formulae shall be developed so that they can be used in principle for 
any value of cp, but in the numerical calculations in this section we shall consi
der mainly the special values cp = 0° and cp = 30°, for which the Tables in the 
Appendix can be used. The results of the calculations for cp = 0° and cp = 30° are 
recorded on Graphs 1-6 and 7-18 respectively in the Appendix, but, by means of 
Graphs 19-20, these results can also be used approximately for other friction 
angles.

Although in a theory of plasticity the law of superposition is, strictly 
speaking, not valid except in special cases, it shall be shown later that a very 
good approximation will generally be obtained by assuming this law to be valid. 
Thus, for i = j = 0, the case of frictionless earth may be superposed on a case 
of "hydrostatic” pressure,and the cases of weightless earth and cohesionless,
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unloaded earth may be superposed on each other when the friction angle is the 
same.

In order to facilitate such superpositions in practice, it is convenient to 
have the same u for weightless earth as for cohesionless, unloaded earth. There
fore, whereas in the latter case we assume (as described in Section 47) Ax to be 
given and determine u and Ay, for weightless earth we shall assume u to be given 
(as the value obtained for cohesionless, unloaded earth with the same £) and de
termine px and py.

For cohesionless, unloaded earth we have e^ = 0 and K = 0 (see 4705), and 
find then from 4708-09 the following equations, the first of which is a second- 
degree equation in 1 - w :

(1 w)' (1 - u + 1) A (3n - 1) 
2 (A - Ax) 0 \y x A - AxA + ——--------u (2 - u) 5101-02

For weightless earth we have y = 0, ex = px and e^ = py and find then from 
4706-07:

P x - P
28 - m

1 - (*)
ny = i + - 26 5103-04

Finally, for frictionless earth we have y - 0, ex = kx and e^ = and find 
then from 4711-12:

u o 2kC - KX
K - K.X 5105-06

512. Small-Scale Model Tests

In order to study the shape of actual rupture-figures in sand, the author 
carried out a number of small-scale model tests in an apparatus devised for this 
purpose.

The wall was 15 cm wide and 15 cm high. Two different walls were used, one 
of polished glass and one of aluminium with the back covered with sandpaper. The 
latter can be considered perfectly rough, but the former is far from being per
fectly smooth. Both walls were so rigid that their elastic deformations may be 
disregarded.

The earth was clean, dry sand in a rather loose state (y = 1.6 t/m3) as no 
attempt was made to compact it. It contained grains up to 2 mm, but the main part 
of the grains were smaller than 0.5 mm. Its friction angle in the loose state 
was about 32° (measured as the angle of repose), and it possessed no cohesion.

In all the tests the ground surface was horizontal and the wall vertical 
(in the middle of the test). The following procedure was used: A rotation centre 
was fixed and the wall was given a slow continuous rotation about the correspond
ing horizontal axis. The sand-papered wall was prevented from rising vertically, 
whereas the glass wall was allowed to rise freely.



51. Main Cases and Model Tests 139

During the rotation the movements of the sand grains were recorded on a 
photographic plate, but the exposure was not commenced until a state of rupture 
had developed in the earth. Ihis procedure was chosen in order to record, as far 
as possible, only the plastic deformations and not the elastic ones.

A number of such photographs are reproduced in the following sections. The 
rotation centre is indicated by a small circle, and the direction of the rotation 
by arrows. Two arrows and no rotation centre indicate a translation.

In a few cases, tests were made with an aluminium wall provided with a hori
zontal hinge in the centre. Hie upper and lower free edges were kept in position, 
while the hinge was moved outwards or inwards.

Originally, provisions were made for measuring the total earth pressure on 
the wall (in two horizontal lines), but this was given up, as too large errors 
were introduced through the friction against the side walls of the rather narrow 
test box. However, this side friction did not greatly influence the shape of the 
rupture-figure, as the distance from the wall to the point »here the lowest rup
ture-line met the ground surface, was only slightly smaller at the side walls 
than in the middle of the box.

It has been deliberated whether or not to show in the photographs the theo
retical rupture-lines as determined by the following calculations. However, as 
these calculations are made for cp = 30° and perfectly rough or smooth walls only, 
whereas the actual friction angle in the tests was 32° and the glass wall, at 
least, was neither perfectly rough nor smooth, the author decided to let the 
photographs speak for themselves.

52. KIPTURES R AND P

521. Frictionless Earth
loO

With <p = 6 = y = P = 0, h = 1 and c * 1, we find from 4315 and 3350-51:

oi = 1 oft = 1 + 2 (vi - vf|) 5201-02 i
Kfl tel

For the rupture R (smooth wall) we get, by means of 4312-13, 4316 and
4301-02:

I*
''■sK- ■ 2 es = •§ 5203-04

For the rupture P (rough wall) we get, by means of 4312, 4314, 4317 and 
4301-02:

xr = 1 + jTt = 2.57 Cr = 1 5205-06

As explained in Section 433, the wall can rotate about any point below its
foot.
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522. Weightless Earth

With y = c = a = 0, h = 1 and p = 1 we find from 4315 and 3318-19:

ti « tan(45°+ £q>) tfj = e2t‘(v’1"VN) tan(45°+ *cp) 5207-08

Por the rupture R (smooth wall) we get, by means of 4312-13, 4316 and 
4301-02:

ps = tan2 (45°+ f<p) 0S = 1 5209-10

Por the rupture P (rough wall) we get, by means of 4312, 4314, 4317 and 
4301-02:

pr = eu(2Tt+<?>)cos qp tan (45°+ -§qp) 9r = * 5211-12

Values of p for different friction angles are given in a table in Section
523.

The possible locations of the rotation centre have been discussed in Sec
tion 433. We shall here, as an approximation, assume that the active ruptures R 
and P, as well as the passive rupture R, will occur for any rotation centre be
low the foot of the wall, whereas the passive rupture P will occur only for £, = 0. 523

523. Cohesionless, Unloaded Earth

With p = c = a = 0, h = 1 and y = 1, we find from 4315 that t’i = 0.

We shall first consider the rupture R (smooth wall). 4312-13 show that one 
straight rupture-line satisfies all the statical boundary conditions. Therefore 
we have:

ct = 0° 0 = 45°- h k = 1 : sin 0 5213-15

With these values 3318, 4316 and 4301-02 yield:

As = tan2 (45°+ -§<p) = ps ns = t 5216-17

The correctness of this result should be checked by investigating whether 
the equilibrium conditions 4319-21 are satisfied, but it will be found that this 
condition is fulfilled in the present case.

The rupture P (rou^i wall) can be calculated very accurately by approximab 
ing the lowest rupture-line by means of 1 straight line and 2 circles (Pig. 52A). 
By means of 4307-10, 4312 and 4314 we find:

= 0° a2 = 5218-19

01 = 45°- iq> 02 = 33.75°- !<p

<*: = 11.25° + i<p

03 - 11.25°- jq> 5220-22
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The unknown quantities are klf k2 and k0, and for their determination we 
have the equations 431^-20. The solution is obtained in the following way:

First, 4318 is used to eliminate kt from 4319-20, leaving two second-degree 
equations in k2 and k3. They are solved hy eliminating the second power of k3, 
obtaining thus a first-degree-equation in k3. Finally, this is used to eliminate 
k3 from one of the equations, giving a fourth-degree-equation in k2 alone. When 
k,, k2 and k3 have been determined, e * X is found by means of 3318 and 4317.

Example 52a

With <p = + 30° (passive pressure) a calculation as outlined above has given the following 
results:

oil =0° 3i = 30° a2 = a3 = 32 = - 33 = 150

k4 = 1.581 k2 = 1.025 k3 = 0.215 Xg = 5.66 = $

A check is obtained by calculating z = T) by means of 4321, which gives T) = 0.339. Fig. 52A 
(left) is drawn to scale corresponding to cp = + 30°.

Fig.52A: Calculation of passive and active P-ruptures

With cp = - 30° (active pressure) a corresponding calculation has given:

«! = 0° 02=1X3= 7.5° Pi = 60° p2 = 52.5° 0S = 37.5°

kj = 0.720 k2 = 0.441 k3 = 0.045 " 0.266 = y

By means of 4321, we find 7) = 0.333 which is exact. Fig. 52A (right) is drawn to scale
corresponding to cp = - 30°.

For X no simple, exact formula can be indicated, such as 5211 for pr. How
ever, the author has developed the following simple, empirical formula:

pr + 0.007 (e'9 sin cp
^r

_1
G1) 5223-24
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As all other formulae in Sections 522-23, equation 5223 is valid for pas
sive pressures with a positive <p. and for active pressures with a negative tp. It 
involves errors of less than 1% and is thus considerably more accurate than the 
empirical formula developed by Kerisel (1939), quite apart from the fact that the 
Kerisel formula can be used for passive pressures only. 5223 may also be used for 
an imperfectly rough wall when <p is substituted by 6.

In the following table some values of ps (5209), Pr (5211), Xg (5216) and 
A (5223) are indicated:

<p pS-*8 pS ■ P? pr K
0 1.00 1.000 1. 00 1.000 1.00 1.000
5 1. 19 0.840 1.26 0.802 1.27 0.798

10 1.42 0.704 1. 60 0.646 1.63 0.641
15 1.70 0.589 2.06 0.522 2. 12 0.516
20 2.04 0. 490 2.70 0.422 2.84 0.415
25 2.46 0.406 3.63 0.340 3.93 0.333
30 3.00 0.333 5.03 0. 273 5.66 0.266
35 3.69 0.271 7.25 0.218 8.46 0.211
40 4.60 0.218 11.02 0. 172 13.29 0.165
45 5.83 0. 172 18.01 0. 134 22.07 0. 127

y^r,r>un v(grJiHV’
With regard to the possible locations of the rotation centre for

tures R and P, the same remarks apply as made at the end of Section 522.

Fig.52B: Actual Rupture R Fig.52C: Actual Rupture P

Pig. 52B shows an actual rupture R, corresponding to £ = 0 and negative ro
tation (glass wall). Pig. 52C shows an actual rupture P, corresponding to t = «> 
and outward movement (sand-papered wall).
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53. RUPTURE A

531. Frictionless Earth

5 £ sec J

Fig.53A: Rupture A

A rupture A for i = j = 0 is shown 
in Fig.53A. We have here cp = 6 = y = 0, 
p = 0. h = 1 and c * 1 (neg. rot.). We
find then from 3414:

bé>
o’ = cot(P+a) 5301

Ac
By insertion of 5301 in 3353, and 

of this in 4213, we find an equation 
which can be transformed to the following

Vcysin(2P+a) + (l-Vcx+a)cos(2p+a)

+ Vcysin a + (l+Vcx-a)cos a = 0 5302

In the case of a smooth wall (a=0), 
we choose an arbitrary value of a and
insert in 5302, taking the V-functions

from Table 1 in the Appendix. The angle 3 + |a can then be found by means of 
340&-07. Next, we find £ frpm 4$lo, as well as k = E and £ = z from 4^4 and 4216 
(after insertion of 3^§4, 33$9 and 5301). Further, we determine = ef with the 
aid of 3350 and 3426. Finally, u° and xy are calculated by means of 5105-06 with 
kx = -2 (neg. rot.). The results of a number of such calculations are given in
the following table:

I
a P . £ V. £ u° k?
0 45.0 oo 2.000 0. 500 2.00 1.000 2.00
5 45.3 6. 155 1.989 0.442 2.03 0.942 2.23

10 46. 2 3.224 1.961 0.386 2.10 0.887 2.46
15 47.6 2.207 1.916 0.333 2.21 0. 837 2.68
20 49.5 1.675 1.858 0. 285 2.34 0.793 2.87
25 51.8 1.344 1.793 0.241 2.49 0.755 3.03
30 54.5 1. 117 1.722 0.200 2.65 0.723 3.15
35 57.6 0.952 1.648 0. 163 2. 82 0.695 3.25
40 61. 1 0.830 1. 568 0.126 2.98 0.671 3.32
45 64.8 0.736 1.480 0.087 3. 14 0.649 3.36
50 68.8 0.663 1.377 0.041 3.28 0.626 3.39
55 73. 1 0.606 1. 239 -0.024 3.38 0.599 3.41
58.5 76.5 0.574 1.103 -0.099 3.41 0.574 3.41

155"
In the case of a rough wall, we choose an arbitrary value of a and assume

3 = a. Next, we find £, k and £ as described above, whereas 4213 gives the average
value of a. When a is known, we can also find *f, assuming a to be constant along 
the wall. Finally, w° and xy are calculated with kx = - 2.57 (neg, rot.). The re
sults are given in the following table:
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0=0 a = a K c Kf u° i<y

45 1.000 2. 142 0.267 3. 14 0.788 3.41
50 0.852 1.959 0. 205 3.32 0.745 3.51
55 0.745 1.797 0.152 3.48 0. 714 3.55
60 0.667 1.638 0.098 3.61 0. 687 3.55
65 0.609 1.457 0.032 3.70 0.661 3.52
67.5 0.586 1.346 -0.015 3.71 0.646 3.49

vs

532 . Weightless Earth
6^

We have here y = c = a = 0, h = 1 and p = 1. We find then from 3413:

sin(0+ot+<p)
sinO+a) 5303

‘yi & AoS
By insertion of 5303 in 3325-26, and of these as well as 3221 in 4213, 

find an equation which can be transformed to the following:
we

(V^xtan 6 + Vty - cos <p)sin(20+a+cp) + (V^ytan 6 - V^x + sin cp)cos( 20+a+cp)

+ ^V^xcos(a+<p-6) + V^ysin(a+<p-6) J sec 6 - sin a = 0 5304

In the case of a smooth wall (6 = 0) we choose an arbitrary value of a and 
insert in 5304, taking the V-functions from Table 2 (<p = + 30°, neg. rot.) or 
Table 3 (<p = - 30°, pos. pt.) in the Appendix. The apgle 0 + + fcp can then
be found by means of 3406-07. Next, we find l from 42l0, as well as p = E and 
0 = z from 4214 and 4216(after insertion of 3222 , 3326 , 3335 and 5303). Further, 
we determine pf = ef with the aid of 3318 and 3425. Finally, we find from the 
tables in Section 533 (tay interpolation) the value of u corresponding to the given 
£, and can then determine px and c? by means of 5103-04.

The results for qp = + 30° (neg. rot.) are given in the following table:

a 0
P
t

Vp
p

1
e Pf (l) Px Py Fa

0 30.0 CO 3.000 0.500 3.00 1.000 _ 3.00
5 30.4 10.22 2.977 0.434 3.06 0.705 1.640 3.53

10 31.7 5.085 2.924 0.374 3.20 0.586 1.145 4. 18
15 33.9 3.279 2.844 0.324 3.43 0.497 0.855 4.86
20 36.8 2.335 2.756 0. 287 3.74 0.427 0.706 5.50
25 40.5 1.757 2.669 0.260 4. 12 0.373 0.629 6. 10
30 44. 7 1.375 2.591 0.241 4.57 0.332 0.582 6.63
35 43.4 1. 113 2. 523 0.228 5.08 0.301 0.559 7.09
40 54.4 0.927 2.460 0.218 5.63 0. 278 0.539 7.45
45 59.5 0.794 2.388 0.209 6. 13 0.260 0.509 7.73
50 64.7 0. 698 2.279 0.201 6. 49 0.244 0.476 7.86
52.6 67.4 0.659 2. 192 0. 198 6.56 0.238 0.454 7. 77
no

The results for qp = - 30° (pos. rot.) are given below:
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a P £ P 0 pf U) Px p* £z
0 60.0 00 0.333 0.500 0.333 1.000 - 0.333
5 60.2 3.769 0.336 0.566 0.327 0.907 0.85 0.287

10 60.9 2.076 0.342 0.627 0.313 0.873 1.03 0.242
15 62.0 1.492 0.352 0.678 0.292 0.849 1.18 0.204
20 63.3 1. 190 0.365 0.719 0.270 0.830 1.30 0.172 ..
25 64.9 1.002 0.380 0.750 0.246 0.813 1.40 0.146°-^
30 66.7 0.873 0.397 0.772 0. 223 0.800 1.48 0.127-3
35 68.6 0. 780 0.416 0.788 0.201 0.788 1. 55 0. 112
40 70.7 0.709 0.437 0.799 0. 181 0.777 1.61 0. 101
45 72.9 0.654 0. 461 0.806 0. 163 0.767 1. 67 0.093
50 75.2 0.611 0.489 0.810 0. 148 0.759 1.74 0.088
55 77.8 0.576 0.524 0.813 0. 135 0.751 1.84 0.087
60 80.8 0.547 0.570 0.815 0.125 0.743 1.97 0.087
65.2

\Cn
84.8 0.521 0.651 0.816 0.120 0.734 2.20 0.091

In the case of a rough wall we can, for <p = - 30° and a < 61. 1°, employ
the same procedure as above, assuming 6 = <p. In the remaining cases' we must, how- 533
ever, assume P = a and find the average 6 from 4213 . When 6 is known, we can also
find p^, assuming 6 to be constant along the wall. Finally, px and $ are deter-
mined as described above.

Hie results for <j> = + 30° (neg., rot. ) are given in the following table:

a = P £ tan 6P P e Pf w p* py

40 1.210 0.221 3.214 0. 233 6. 33 0.378 0.455 7.75
45 1.000 0.217 3. 100 0.218 7.01 0.331 0.487 8.38
50 0.852 0.218 3.007 0.206 7.71 0.300 0.481 8.90
55 0.745 0.219 2.899 0. 197 8.30 0.277 0.469 9.24
60 0.667 0.220 2. 721 0.188 8.57 0.259 0.429 9.28

170
Ihe results for <p = - 30° (pos. rot. ) are given below:

a P £ tan (P P 0 Pf u Px py

25 55.3 1.242 -0.577 0. 295 0. 653 0. 245 0.918 1. 39 0. 197
30 56.1 1.083 -0.577 0.310 0.691 0.233 0. 903 1.53 0. 179
35 56.8 0.967 -0.577 0.326 0.719 0.220 0.892 1. 65 0. 166
40 57.7 0.877 -0.577 0.343 0.738 0.208 0.883 1.74 0. 159
45 58.5 0.807 -0.577 0. 362 0.751 0. 197 0.875 1.82 0. 154
50 59.3 0.749 -0.577 0.382 0.758 0.187 0.867 1.86 0. 155
55 60.2 0.701 -0.577 0.404 0.761 0.180 0.862 1.93 0. 159
60 60.9 0.660 -0.577 0.429 0.760 0.175 0.856 1.98 0. 168
61. 1 61.1 0.652 -0.577 0.434 0.760 0.174 0.854 1.98 0. 170
65 65 0.609 -0.454 0.475 0.783 0. 146 0.848 2.24 0. 158
70 70 0.566 -0.338 0.537 0. 798 0.125 0.839 2.53 0. 155
75 75 0.536 -0.261 0.625 0.806 0. 115 0.832 2.90 0. 165

533. Cohesionless, Unloaded Earth

We have here p = c = a = 0, h = 1 and y = 1. 3413 gives then t’ = 0, and ty 
insertion of 3223 and 3325-26 in 4213, we find an equation which can be trans
formed to the following;

(Vyx - j cos 2tp) sin( 2P+2<p) + (Vyxtan 6 + z sin 2<p) cos(2p+2<p)

+ (VYZ - HYZtan 6 - G^z) = 0 5305
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In the case of a smooth wall (6 * 0) we choose an arbitrary value of a and 
insert in 5305, taking the G-function from Table 1 in the Appendix, and the V- 
and H-functions from Table 2 (<p * + 30°, neg. rot.) or Table 3 (qp = - 30°, pos. 
rot.). The angle p + qp can then be found by means of 3406-07. Next, we find £ 
from 4210, as well as X = 2E and r\ - z from 4214 and 4216 (after insertion of yf 
3224, 3326 and 3335). Further, we determine Xf * ef with the aid of 3318 and 3425. 
Finally, w and Xy are calculated by means of 5101-02 with Xx = j (neg. rot.) or 
Xx = 3 (pos. rot.).

The results for <p = + 30° (neg. rot.) are given in the following table:

0L P £ X n xf (l) Xy

0 30.0 CO 3.000 0.333 3.00 1.000 3.00
5 31.9 9.664 2.982 0.292 3.03 0.697 3.25

10 34. 2 4.670 2. 946 0.257 3.09 0.570 3.54
15 36.9 2.987 2.898 0.227 3.20 0.477 3.87
20 40.0 2. 140 2.843 0.204 3.34 0.410 4.18
25 43.5 1.632 2. 781 0. 187 3.51 0.360 4.48
30 47.3 1.298 2. 721 0.174 3.71 0.323 4.74
35 51.5 1.068 2.665 0. 164 3.93 0.296 4.96
40 56.0 0.902 2.614 0. 156 4. 17 0.275 5. 15
45 60.6 0.781 2.565 0.150 4.41 0.258 5.31
50 65.4 0.692 2.514 0. 145 4.64 0. 243 5.44
52.3 67.7 0.659 2.488 0. 143 4.73 0.238 5.48

Mo
The results for <p = - 30° (pos,.rot.) are given below:

a P £ X n Xf (l) \y
0 60.0 CO 0.333 0.333 0. 333 1. 000 0.333
5 61.8 3.560 0.335 0.378 0.331 0.904 0.310

10 63.9 1.890 0.339 0.415 0.324 0.867 0.291
15 66. 1 1.326 0.345 0.448 0.314 0.839 0.274
20 68.6 1.039 0. 353 0.475 0.302 0.817 0.261
25 71. 2 0.864 0.363 0.498 0.289 0.798 0. 250
30 74.0 0.748 0.373 0.516 0. 276 0.783 0.243
35 77.0 0.665 0.385 0.530 0.264 0.769 0.237
40 80. 1 0.604 0.397 0.541 0.252 0.757 0.234
45 83.4 0.558 0.410 0.550 0.241 0.746 0.232
50 86.9 0.523 0.425 0.558 0.231 0.735 0.230
54.2 90.0 0.500 0.439 0.564 0.224 0.725 0. 230

1 KM ,2

In the case of a rough wall we can, for qp = - 30°. use the same ]procedure
above , assuming 6 = qp. For <p = + 30° we must , however, assume P = a and find

the average 6 from 4213. When 6 is known, we can also find Xf, assuming 6 to be 
constant along the wall. Finally, w and Xy are calculated with Xx = 0.266 (neg. 
rot.) or Xx = 5.66 (pos. rot.).

The results

= P £

40 1.210
45 1.000
50 0.852
55 0.745
60 0.667

for qp = + 30°

tan
0.288 
0. 268 
0.256 
0.248 
0.243

(neg. rot.) are given in the following table:

X n Xf W \y

3.824 0. 185 5. 35 0.378 6.07
3.611 0. 168 5.56 0.331 6.32
3.458 0. 156 5.81 0.300 6.53
3.340 0.147 6.08 0.277 6.71
3.236 0. 140 6.33 0.259 6.85

Mb
The results for <p = - 30° = 6 (pos. rot.) are given below:
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a 8 £ A n \f u xy
20 60.9 1. 264 0.274 0.412 0.258 0.'920 0. 239
25 62.9 1. 048 0.282 0.448 0.251 0.900 0.228
30 65.0 0.903 0.292 0. 477 0.244 0.886 0.221
35 67. 2 0.800 0.302 0.500 0.235 0.874 0.216
40 69.6 0.722 0.313 0.518 0.226 0.864 0.213
45 72.0 0.663 0.325 0.532 0.217 0.856 0.212
50 74.5 0.616 0.337 0.542 0.208 0.849 0.213
55 77. 2 0.580 0.350 0.551 0. 200 0.842 0.215
60 80.0 0.551 0. 364 0. 558 0. 192 0.836 0.217
65 83.0 0.528 0.378 0.564 0. 184 0.830 0.221
66.2 83.8 0.524 0.382 0.565 0. 183 0.828 0.222

/SO

Fig.53B: Actual Rupture S Fig.53C: Actual Rupture A

Pig. 53B shows an actual rupture S, corresponding to £ = w and inward movement 
(glass wall). Due to the fact that the exterior pressure was not quite horizontal, 
the inclination of the rupture-line does not agree with Coulomb’s theory. Pig.53C 
shows an actual rupture A, corresponding to £ = 0.78 and positive rotation (sand
papered wall).

54. RUPTURE AaR 

541. Fr1 c11 on 1ess Earth

A rupture AaR for i = j = 0 is shown in Fig.54A. We have here <p = 6 = y = 0, 
p = 0, h = 1 and c2 = - ct = 1 (neg. rot.). We find then from 4401, 4404 and 
4418 - 20:

at =0° 8, = 45° P2 = 135°- a2 oi - a’2 = - 1 5401-04

By insertion of 5403-04 in 3353, and of this in 4424, we find the following 
equation:

v£x + (V?y - 1) cot(135°-a2) - = 0II2
5405
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P

Fig.54A: Rupture AaR

In the case of a smooth wall (a = 0) 
equation 5405 enables the determination of 
a2 (by trial) independently of h2. This gives 
a2 = 58.5° and P2 = 76.5°. Next, we choose 
an arbitrary value of h2 and find £ from 
4421, as well as x = E and C = z from 4425 
and 4427. Finally, x^, u° and xy are found as 
described in Section 531, which gives xf * 
3.41, w° = £ and xy = 3.41. The remaining 
results are given in the following table 
(neg. rot.):

Il2
1.0
0.9
0.8
0.75
0.7
0.645
0.6
0.5
0.4
0.3
0.2
0.1
0.0

£ = u°

0.574 
0.516 
0.459 
0.430 
0.402 
0.370 
0.344 
0.287 
0.230 
0.172 
0. 115 
0.057 
0.000

X

1. 103 
0.793 
0.483 
0.328 
0.172 
0.000 

-0.138 
-0.448 
-0. 759 
-1.069 
-1.379 
-1.690 
-2.000

c
-0. 099 
-0. 352 
-0.891 
-1.524 
-3.271 

oo
4.925 
1.734 
L 131 
0.861 
0.699 
0.587 
0. 500

In the case of a rough wall we assume p2 = a:2, with which 5403 gives a2 *
P2 = 67.5°. Next, we find £, x and C as described above, whereas 5405 gives the
average value of a. Finally, Xf, w° and xy are calculated as described in Section
531, which gives 
(neg. rot.):

xf = 3.71. The remaining results are given in the following table

1*2 £ * a K C xy

1.0 0.586 1.346 -0.015 0.646 3.49
0.9 0.527 1.012 -0.204 0.603 3.37
0.8 0.469 0.677 -0.551 0.562 3.21
0. 75 0.439 0.510 -0.880 0.543 3. 10
0.707 0.414 0.366 -1. 393 0.528 2.99

542. Weightless Earth

We have here y=c = a=0, h=l and p ■ 1. We find then from 4401, 4404, 
4418-20 and 5209:

a2 =0° Pi = 45°-|<Pi 3s = 135°+ 3<Pi - a2 5406-08

ti = ti - tan(45°+ hi) = h2 tan2 (45°+ hi) 5409-10

By insertion of 5407-09 in 3325-26, and of these as well as 5410 and 3221 
in 4424, we find the following equation:



v£x + (V^- tan Pi)cot p.
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2 - [v£y - v£xcot P2 + (jj--l)cot Pi] tan 6 = o 5411

In the case of a smooth wall (6 = 0) equation 5411, in connection with 
5407-08, enables the determination of a2 (by trial) independently of h2. Next, we 
choose an arbitrary value of h2 and find £ from 4421, as well as p = E and 0 = z 
from 4425 and 4427. Finally, p^, px and py are calculated as described in Section 
532.

With <P2 = - <Pi “ + 30° (neg.. rot.) we find a2 = 52.6°, P2 = 67.4°
6.56. The remaining results iare given in the following 1table:

h2 £ P 0 (l) P* py

1.0 0.659 2. 192 0. 198 0. 238 0.454 7. 77
0.9 0.593 2.006 0. 191 0.221 0.415 7.60
0.8 0.527 1.820 0. 185 0. 203 0.381 7.45
0.7 0.461 1.634 0. 182 0. 182 0. 363 7.32
0.6 0. 396 1.449 0. 181 0. 159 0.350 7.21
0.5 0. 330 1.263 0. 185 0. 135 0. 343 7.12
0.4 0.264 1.077 0. 194 0. 109 0.337 7.04
0.3 0. 198 0.891 0.214 0.083 0.335 6.97
0.2 0. 132 0.705 0.252 0.056 0.334 6.91
0. 1 0.066 0.519 0.326 0.028 0.333 6.86
0.0 0.000 0.333 0.500 0.000 0.333 6.82

With <P2 = - <Pi * - 30° (pos. rot.) we find a2 = 65.2°, P2 = 84.8°
0.120.

h2

The remaining

£

; results

P

are given

0

below:

(i) px py
1.0 0.521 0.651 0.816 0.734 2. 20 0.091
0.9 0.469 0.886 0.807 0.705 2. 73 0. 114
0.8 0.417 1.121 0.785 0.647 2.94 0. 133
0.7 0.365 1.356 0. 756 0.573 2.98 0. 144
0.6 0.313 1.591 0.724 0.495 3.00 0. 153
0.5 0. 260 1.826 0.689 0.413 3.00 0. 153
0.4 0.208 2.061 0.653 0.330 3. 00 0.153
0.3 0. 156 2.295 0.616 0.248 3. 00 0. 153
0.2 0. 104 2.530 0.578 0. 164 3.00 0. 153
0.1 0.052 2.765 0.539 0.083 3.00 0. 153
0.0 0.000 3.000 0.500 0.000 3.00 0. 153

In the case of a rough wall we assume p2 = a2 and use 5408. Further, 5411 
gives the average 6. Otherwise, the procedure is the same as before.

suits
With
are

<P2 *
given

- <Pi “ + 30° (neg 
in the following

. rot.) we 
table:

find a2 = p2 = 60°. The remaining re

h2 £ tan 6P P 0 Pf (*) Px py
1.0 0.667 0.220 2.721 0. 188 8. 57 0.259 0.429 9.28
0.9 0.600 0.216 2.482 0. 179 8.55 0. 242 0.380 9.07
0.8 0.533 0.213 2.243 0. 172 8. 53 0.222 0. 352 8.87
0.7 0.467 0. 208 2.005 0. 167 8.51 0.201 0. 334 8. 65
0.6 0.400 0. 203 1.766 0. 165 8.48 0. 179 0.322 8.37
0.5 0. 333 0. 195 1.527 0. 165 8.45 0. 157 0.313 8.04

With
suits are

<P2 = ' 
gi ven

- <Pi = - 30° 
below:

(pos. rot.) we find a2 - P2 = 75°. The remaining re-
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h2 £ tan 6P P 0 Pf U) Px P*
1.00 0.536 -0.261 0.625 0.806 0. 115 0.832 2.90 0. 165
0.95 0.509 -0.208 0.743 0. 808 0. 110 0.822 3.31 0. 186
0.90 0.482 -0. 170 0.862 0.804 0. 108 0.810 3.62 0.215
0.866 0.464 -0. 150 0.943 0.798 0. 106 0.791 3.63 0.233

543. CO h e s 1 o n 1 e s s , Unloaded Earth

We have here p = c = a = 0, h = 1 and y = 1. We find then from 4401, 4404, 
4418-20 and 5216:

= 0° 01 “ 45°- |«p1 $2 = 135 + 2*Pl - ^2 5412-14

= 0 t2 = hi tan(45°+ |<Pi) Hi = -§h? tan2(45°+ iv±) 5415-17

By insertion of 5413-16 in 3325-26, and of these as well as 5417 , 3 2 23 and 
3227 in 4424, we find a second-degree-equation in h2, the coefficients of which 
are functions of a2l 02, and 6.

In the case of a smooth wall (6 = 0) equation 4424 is reduced to a first- 
degree-equation in h2, which can be solved when we insert a chosen value of a2 
and the corresponding 02 (from 5414). However, the values of a2 which give usable 
values of h2 (0 ^ h2^ 1) lie usually within a very narrow interval. When h2 has 
been determined, we find £ from 4421, as well as X = 2E and i) = z from 4425 and 
4427. Finally, Xf, u and Xy are calculated as described in Section 533.

For <p2 = - <Pi = + 30° (neg. rot.) we know that a2 must lie between 52.3° 
(Section 533) and about 52.6b (Section 542). The results of the calculations are 
given in the following table:

a2 & tl2 £ X n U) xy

52. 30 67.70 1.000 0. 659 2. 488 0. 143 4.73 0. 238 5.48
52.34 67.66 0.937 0. 617 2.444 0. 139 4.84 0.227 5.57
52.39 67.61 0.830 0.546 2.342 0. 133 5.04 0.209 5.71
52.43 67.57 0.732 0.482 2.217 0. 128 5.22 0. 189 5. 84
52.47 67.53 0.626 0.412 2.048 0. 121 5.41 0. 165 5.98
52.51 67.49 0.503 0.332 1. 808 0. 116 5.64 0. 136 6. 15
52.55 67.45 0.364 0.240 1.479 0. 113 5.89 0. 100 6. 34
52. 58 67.42 0. 247 0. 163 1. 157 0. 120 6. 11 0.069 6.49
52.60 67.40 0. 162 0. 106 0.893 0. 139 6.26 0.046 6. 61
52.61 67.39 0. 118 0.077 0.749 0. 158 6.34 0.033 6. 67
52.62 67.38 0.071 0.047 0.589 0. 193 6.43 0.020 6.72
52.63 67.37 0.021 0.014 0.409 0. 272 6.52 0.006 6. 77
52. 64 67.36 0. 000 0.000 0.333 0.333 6.56 0.000 6.82

For qp2 = - cpi = - 30° (pos. rot.) we know that 02 must lie between 90° 1
tion 533) and 84.8° (Section 542). Consequently, a2 must lie between 60 0 and
65.2°. The results of the calculations are given below:

a2 02 h2 £ X n (*) xy

60.0 90.0 0.727 0.364 0.719 0.604 0. 185 0.572 0.209
60.5 89.5 0. 667 0. 335 0.822 0.599 0. 179 0. 530 0.203
61.0 89.0 0. 605 0.305 0.944 0. 588 0. 172 0.484 0. 198
61.5 88.5 0.540 0.274 1.088 0.572 0. 165 0.435 0. 192
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oh h2 l \ n (ft)

62.0 88.0 0.473 0.241 1. 257 0.551 0. 158 0.383 0. 187
62.5 87.5 0.404 0.207 1.451 0.525 0. 152 0.329 0.181
63.0 87.0 0.333 0. 171 1.673 0.495 0. 145 0.272 0. 176
63.5 86.5 0.259 0. 134 1.926 0.462 0. 139 0.212 0. 171
64.0 86.0 0.183 0.095 2.211 0. 426 0. 133 0. 150 0. 165
64.5 85.5 0.105 0.054 2.530 0.387 0. 127 0.086 0. 160
65.2 84.8 0.000 0.000 3.000 0.333 0. 120 0.000 0. 153

In the case of a rough wall we can, for <p2 = - 30°, use the same procedure
as above. assuming 6 = <p2. The only difference is that 4424 is a second-degree-
equation in this case. For cp2 = + 30 0 we must, however,, assume 02 = a2 and use
5414. The remaining calculation is then carried out with an arbitrary value of
h2, and 4424 gives the average 6.

With qp2 = - = + 30° (neg. rot.) we find a2 = |32 = 60°. The remaining re
sults are given in the following table:

h2 £ tan 6Y \ n \ (ft) \y

1.0 0.667 0. 243 3.236 0. 140 6.33 0. 259 6.85
0.9 0. 600 0. 239 3. 114 0. 134 6.55 0.242 6.97
0.8 0.533 0. 235 2.955 0. 127 6. 77 0.222 7.07
0.7 0.467 0.231 2.758 0.120 6.99 0.201 7.15
0.6 0.400 0.226 2.524 0. 113 7.20 0. 179 7. 19
0.5 0.333 0.220 2. 253 0. 107 7.40 0. 157 7.14

The results for <p2 = - cPi = - 30° = 6 (pos. rot.) are given below:

02 h2 £ \ h Xf (ft) \y

66.2 83.8 1.000 0.524 0.382 0.565 0. 183 0.828 0.222
67.0 83.0 0. 967 0. 509 0.397 0.571 0.177 0.822 0.225
68.3 81.7 0. 923 0. 488 0.425 0.578 0. 168 0.812 0.233

Fig.54B: Actual Rupture AaR Fig.54C: Actual Rupture AaR
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Fig.54B shows an actual rupture AaR, corresponding to £ = 0.38 and negative 
rotation (glass wall). Fig.54C shows another actual rupture AaR, corresponding to 
£ =0.50 and positive rotation (sand-papered wall).

55. RUPTURE AaP

551. Prictionle8s Earth

P

E set å

Fig.55A: Rupture AaP

A rupture AaP for i = j = 0 is shown 
in Fig.55A. We have here <p = 6 = y = p = 0 
and cs = - c2 = - Ct = 1 (neg. rot.). o\ 
and o2 are given hy 5404, and 3350 yields 
then:

c*3 - a’s’ » - 1 - t? 5501

As the pseudo-rupture-lines in the 
plastic zone are, in this case, straight 
lines through the top of the wall, we have:

m = 3a+“3-90o a2 = 4-(45°-m) 5502-03

From 4519-22 we find, with h = 1, 
j = 0, and qp = 0:

k3 • sin m sec(Pa-m) 5504

b = cos P3 sec(Pa-m) 5505

Tb = Ta = -1 °b “ °a = 5506-07

The rupture AaP occurs only for a rough wall. In this case we choose an ar
bitrary value of oia and assume P3 * as. Next, we determine successively m, a2, 
a’a, k3, b, Ttø and Otø hy means of 5501-07. We can then find £ from 4534, as well 
as k = E and £ = z from 4539 and 4541. The average a = F is found from 4540. Fi
nally, u° and *y are calculated as described in Section 531. The results are 
given in the following table (neg. rot.):

aa ” Pa £ a K C Kf U°

67.50 0.414 0.414 0.366 -1.393 3.71 0.528 2.99
66.75 0.408 0.377 0.256 -2. 169 3.61 0. 517 2.90
66.00 0.401 0.338 0. 147 -4.088 3.50 0.505 2.81
65.00 0.391 0. 286 0.000 00 3.36 0.488 2.69
63. 75 0.378 0.218 -0.178 4.075 3. 19 0.467 2.55
62.50 0. 365 0.147 -0.356 2.227 . 3.01 0.445 2.40
60.00 0.333 0.000 -0. 705 1.297 2. 67 0.398 2.12
57.50 0.297 -0.155 -1.044 0.978 2. 35 0. 346 1.84
55.00 0.255 -0.316 -1.373 0. 810 1.97 0.289 1.57
50.00 0. 148 -0. 653 -1.997 0.621 1.27 0. 158 1.04
45.00 0.000 -1.000 -2.571 0. 500 0.57 0.000 0.53
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352. Weightless Earth

We have here y = c = a = 0, h = 1 and p = 1. t’i and t2 are given by 5409, 
and 3318 yields then:

t3 = t’i = t\ tan(45°+ f<Pi) 5508

As the pseudo-rupture-lines in the plastic zone are straight lines through 
the top of the wall in this case also, the formulae 5502 and 5504-05 are valid
for m, k3 and b. Instead of 5503 and 5506-07 we find, however:

ot2 = i(450+ ?<Pi- m) Tb = xa = t” sin cp2 ab ' °a = t” cos <p2 5509-11

As the wall is rough, we choose an arbitrary value of a3 and assume 03 = a3. 
Next, we determine successively m, a2, t3, k3, b, Tb and ab by means of 5502,
5509 , 5508, 5504-05 and 5510-11. We can then find £ from 4534, as well as p = E 
and 0 = z from 4539 and 4541. Ihe average 6 can be found hy means of 4540. Final
ly. Pf. PX and py are calculated as described in Section 532.

With cp3 = - cp2 = - cpx = + 30°(neg. rot.) we find the results indicated in 
the following table:

” $3 £ tan 6P P e Pf Cl) pX py
60.00 0.333 0. 195 1.527 0.165 8.45 0. 157 0.313 8.04
58.75 0.316 0. 170 1.341 0.171 7.51 0.151 0.302 7.18
57.50 0.297 0. 141 1.175 0. 178 6.62 0. 143 0. 292 6.46
56.25 0.277 0. 108 1.027 0.187 5.90 0. 133 0.286 5.85
55.00 0.255 0.069 0.897 0.199 5.21 0. 121 0. 282 5.33
53. 75 0.231 0.025 0. 781 0. 213 4.59 0. 108 0.279 4.88
52.50 0.206 -0.027 0. 678 0.232 4.03 0.096 0.277 4.48
51.25 0.178 -0.087 0.587 0.256 3.52 0.082 0.275 4. 11
50.00 0.148 -0. 157 0.507 0. 286 3.07 0.068 0.274 3.76
48.75 0. 115 -0.238 0.437 0.323 2.66 0.053 0.273 3.42
47.50 0.080 -0.333 0.375 0.369 2.29 0.037 0.273 3.08
46. 25 0.042 -0.445 0.321 0.427 1.97 0.020 0.273 2.74
45.00 0.000 -0.577 0.273 0.500 1. 67 0.000 0. 273 2.40

With
tained:

<P3 = - <P2 = - <Pi = - 30° (pos. rot. ) the following results are ob-

a3 = $3 £ tan 6P P e Pf U) px py
75.0 0.464 -0. 150 0.943 0.798 0. 106 0. 791 3.63 0.233
72.5 0. 450 -0.099 1. 119 0.788 0.126 0.778 4.02 0. 290
70.0 0.434 -0.046 1.321 0.775 0. 150 0.765 4.41 0.371
67.5 0.414 0.008 1. 549 0.761 0. 177 0.733 4.56 0.446
65.0 0. 391 0.064 1.806 0.746 0. 210 0.691 4. 68 0.520
62.5 0.365 0. 121 2.093 0.728 0. 249 0.644 4.78 0.610
60.0 0.333 0.179 2.412 0.707 0. 295 0.588 4.86 0.714
57.5 0.297 0.240 2.764 0. 684 0.350 0.525 4.91 0.829
55.0 0. 255 0.302 3. 149 0.657 0.416 0.451 4.95 0.956
52.5 0.206 0.366 3.569 0.626 0.493 0.364 4.98 1. 100
50.0 0. 148 0.433 4.022 0.590 0.584 0.261 5.00 1. 250
47.5 0. 080 0.504 4.509 0.549 0.692 0. 141 5.02 1.410
45.0 0.000 0.577 5.026 0.500 0.820 0.000 5.03 1. 580
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553. CohesiODless, Unloaded Earth

We have here p = c = a = 0, h = 1 and y = 1. ti and t’2 are given by 5415-16 
and we find then by means of 3318, 4503 and 4509:

ta = t’i = h2 (tjx + tFcot Pa) + tits 5512

ct2 = |(Pa + a° - Pa - a3 + (Pa +.90°) Pa = P° + - a2 5513-14

As the wall is rough, we choose an arbitrary value of a3 and assume p3 = ot3. 
5513-14 give then oi2 and p2, after which we find successively m, K, ki, k2, k3, 
t3, b, T|j and ob from 4533, 4535, 4504, 4518-19, 5512 and 4520-22. ta and oa are, 
of course, equal to zero. When this is done we can find £ from 4534, as well as 
A = 2E and n = z from 4539 and 4541. Hie average 6 is calculated by means of 4540. 
Finally, Af, w and Ay are determined as described in Section 533.

For <pa = - 30° (pos. rot.) and P3 > 71.8° we cannot use this procedure but 
must assume 6 = <p3. We choose then a set of values of a2 and a3, and find p2 from 
4503 and p3 from 4509. We proceed then as above, but must change a2 or a3 until 
4538 is satisfied.

For the complete rupture P (superscript 0) we use the values calculated in 
Example 52a. However, as we have here approximated the P-line by means of two 
circles with different radii, the quantities found by a direct calculation for 
the rupture AaP will not exhibit a smooth variation. Therefore, the results given 
in the following two tables have been adjusted somewhat, mainly by assuming that 
w should be approximately proportional to £.

For (p3 = - cp2 == - (Pi = + 30° (neg. rot.) the adjusted results are:

= ^3 £ tan 6Y A n (*) A*

60. 00 0.305 0. 217 2. 127 0. 104 7.51 0. 147 7.08
59. 25 0.282 0.204 1.939 0. 103 7.22 0.135 6.89
58.50 0.258 0. 189 1.750 0. 102 6.92 0. 123 6.69
57.75 0. 234 0. 171 1.562 0. 102 6. 60 0. 110 6.48
57.00 0.208 0.149 1.377 0. 103 6. 25 0.097 6. 26
56.25 0. 182 0. 121 1. 196 0. 106 5.87 0.084 6.02
55.50 0. 155 0.086 1. 020 0. 113 5.47 0.071 5.76
54.75 0. 126 0.039 0. 851 0. 124 5.04 0.058 5.48
54.00 0.097 -0.026 0.692 0. 142 4.57 0.045 5. 18
53.25 0.067 -0.118 0. 545 0. 172 4.07 0. 031 4.86
52.50 0.036 -0. 258 0.411 0. 223 3.54 0.017 4.52
45.00 0.000 -0. 577 0.266 0.333 1. 63 0.000 4.09

For (p3 = - (P2 = -(?!=- 30° (pos. rot.) the adjusted results are:

Pa £ tan 6Y A n \ {*) \y

68.7 81.3 0.481 -0.577 0.434 0.580 0. 165 0.809 0.236
69.3 76.7 0.459 -0.577 0.506 0.590 0. 145 0. 786 0.258
71. 8 71.8 0.428 -0.577 0. 615 0.587 0.120 0. 761 0.309
70.5 70.5 0.415 -0.465 0.693 0.599 0.120 0.735 0.318
69.0 69.0 0.396 -0.336 0. 816 0. 608 0. 121 0.700 0. 336
67.5 67.5 0.374 -0.212 0.977 0.610 0. 122 0.660 0.362
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a3 3s £ tan 6Y X n (>) \y

66.0 66.0 0.347 -0.093 1.188 0.605 0. 132 0. 613 0.398
64.5 64.5 0.315 0. 021 1.470 0.591 0. 144 0.557 0.447
63.0 63.0 0. 276 0.130 1.865 0. 568 0. 167 0.488 0.515
61.5 61. 5 0.228 0.234 2.420 0.533 0.205 0.403 0.625
60.0 60.0 0. 170 0.333 3.200 0.481 0.270 0.300 0.830
57.0 57.0 0. 138 0. 388 3. 650 0.453 0.320 0.244 0.960
54.0 54.0 0. 105 0. 440 4. 123 0.424 0.400 0.186 1.095
51.0 51.0 0.072 0.489 4.610 0.396 0.525 0.127 1. 235
48.0 48.0 0.037 0.535 5.125 0.364 0.695 0.065 1.380
45.0 45.0 0.000 0.577 5.664 0.333 0.925 0.000 1.530

Fig.55B: Actual Rupture AaP Fig.55C: Actual Rupture AaP

Pig.55B shows an actual rupture AaP, corresponding to £ = 0.25 and negative 
rotation (sand-papered wall). Fig.55C shows another rupture AaP, corresponding to 
£ = 0.39 and positive rotation (sand-papered wall). 56

56. RUPTURES XfP AND AwXfP 

561. Introduction

We have seen in Section 433, that when <p * 0, the passive rupture P cannot 
occur for a “normal” rotation of the wall. We have also seen that the passive 
rupture R cannot occur for negative values of £ between 0 and £4 (4327). Similar 
remarks apply to ruptures AaP and AaR with passive pressure in the plastic zone.

Instead of ruptures P and R, the rupture XfP (Fig. 35E) may occur, and, in
stead of ruptures AaP and AaR, the rupture AwXfP (Fig.35F).

Ihe above remarks do not apply to frictionless earth, as in this case the 
ruptures P and R are kinematically possible.
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562. Weightless Earth

The rupture XfP 
can be calculated accord
ing to the principles in
dicated in Section 45. 
Moreover, all formulae 
given in Sections 551-52 
for the rupture AaP are 
also valid for the rup
ture XfP, with the excep
tion that 5502 must be 
substituted by (Pig. 56A):

m = g3+ a3 + <p2 5601

When the wall is 
rough, we choose an arbi
trary negative value of 
a3 and assume go = <x3. 
Next, we determine suc
cessively m, a2, t3, k3, 
b, Tjj and by means of 

5601, 5509 , 5508 , 5504-05 and 5510-11. We can then find £ from 4534, as well as 
p = E and 9 = z from 4539 and 4541. ftie average 6 can be found by means of 4540, 
after which we can calculate with the aid of 3318 and 3425.

With cp3 = <p2 = (pj = + 30° (pos. rot.) we get the results indicated in the 
following table:

- 3a £ tan 6P P 9 pf
-15.0 -0.000 0.577 5.03 0.500 5. 49
-12.5 -0.211 0.529 4.98 0. 503 5. 27
-10.0 -0. 532 0.485 4.91 0.505 5.09
- 7.5 -1.073 0.445 4. 84 0.506 4.93
- 5.0 -2.165 0.409 4.76 0.505 4.79
- 2.5 -5.462 0.376 4.67 0.503 4.68
- 0.0 - CO 0.346 4.58 0.500 4.58

Considering the slight variation of 0. we shall, for the sake of simplicity,
assume a constant 9=4. in which case we have w = 0 and px = p. It should be
noted that for £ =: - co we have p = pf and 6 = V - (p (compare 4328).

When the wall is smooth (6 = 0), we choose a set of values of a2 and a3, 
and find the corresponding g2 from 4503 and g3 from 4508. We proceed then as 
above, but must change ot2 or a3 until 4538 is satisfied.

As an example of such a calculation we can indicate the following result 
3 = qp2 = q)i = + 30° (pos. rot.):for <p



a3 Øs £ P 9 pf
-40.0 50.0 0 2.46 0.639 0

Such a calculation can be carried out for any negative value of £, but if
we determine pf by means of 3425 with 6 = 0, we find negative values of pf when
3a-ct3> 90°- <p. Fbr p3- as = 90°-q>, we find even - <a. As these results are 
meaningless, we shall not use the rupture XfP for a smooth wall but shall in its 
place (as an approximation) use the rupture R, in spite of the fact that it is 
not kinematically possible for £t < £ < 0.

Prom the above example it will be seen that, although p is considerably 
smaller, and 0 considerably greater than for the rupture R (p = 3, 0 = |), the 
moment E(z-x) = p0 about the rotation centre is only about 5% higher for rupture 
XfP than for rupture R. It is, therefore, approximately correct and on the safe
side, to use the rupture R instead of XfP for a smooth wall.

Corresponding to the rupture XfP for - eo < £ < 0 we might, for 0 < £ < f, 
have the rupture AwXfP (Pig. 35P). This rupture could theoretically be calculated 
as a w-rupture (Section 462), using the boundary condition 3428. However, certain 
complications arise indicating that the method is hardly applicable to this case.

For a smooth wall we have already seen that a calculation of the rupture 
XfP leads to meaningless results when 03 - ot3 > 90°- q>, and the same applies, of 
course, to the corresponding rupture AwXfP.

For a rough wall with “normal” rotation we must first remark, as mentioned 
in Section 344, that 3428 may not be valid when &i * 62. Moreover, one or both of 
the rupture-lines will usually meet the wall at right angles, in which case we do 
not know 6 at all.

We shall, consequently, not use the rupture AwXfP, but (as approximations) 
the ruptures AaR and AaP, even in such cases when they are, strictly speaking, 
kinematically impossible. 563
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563. Cohesion1ess. Unloaded Earth

For the rupture XfP the formulae indicated in Section 553 are valid, with 
the exception that 5513 must be substituted by:

ot2 ” "2(32 + ^2 - 33 - a3) 5602

When the wall is rough, we choose an arbitrary negative value of ct3 and 
assume 3S = a3. 5602 and 5514 give then a2 and 32. Next, we determine successive
ly m. K, ki, k2, k3, t3. b, and ob from 4533 , 4535 , 4504 , 4518-19 , 5512 and 
4520-22. t„ and o. are equal to zero. After this we find £ from 4534, as well asd d
X = 2E and r\ = z from 4539 and 4541. The average 6 is calculated by means of 
4540, after which we can find with the aid of 3318 and 3425. For the complete 
rupture P (superscript 0) we use the values calculated in Example 52a.
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With cp3 = <p2 
following table:

= <Pi ■ + 30° (pos. rot.) we get the resu1 ts indicated in the

0*3 ~ (?3 £ tan 6Y X n Xf

-15.0 -0. 000 0.577 5.66 0.333 6. 20
-12.0 -0.094 0. 566 5. 62 0.336 6.05
- 9.0 -0.251 0.537 5.56 0.339 5.90
- 6.0 -0.565 0.496 5.47 0.340 5.65
- 3.0 -1.506 0.449 5.34 0.340 5.40
- 0.0 - CO 0. 399 5. 16 0.338 5. 15

Considering the slight variation of i). we shall for the sake of simplicity
assume a constant r\ = in which case we have w = 0 and Xx = X.

Fig.56B: Actual Rupture XfP

Pig. 56B shows an actual rupture XfP, corresponding to £ = 0 and positive 
rotation (sand-papered wall). It should be noted, however, that the X-line does 
not meet the wall at 90° as assumed above, but at approximately 0°. Fig. 56C shows 
the special rupture SfP, corresponding to £ = oo and inward movement (sand-papered 
wall).

Fig.56C: Actual Rupture SfP
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When the wall is smooth (6 = 0), we choose a set of values of a2 and a3, 
and find the corresponding (32 from 4503 and from 4508. We proceed then as 
above, but must change a2 or a3, until 4538 is satisfied.

As an example of such a calculation we can indicate the following result 
for <p3 = <p2 = <Pi = + 30° (pos. rot.):

a3 g3 £ X h Xf

-38.6 51.4 0 2.28 0.484 0

The moment E(z-x) = ?Xr) about the rotation centre is only 10% greater than 
for the rupture R (X = 3, n = i).

Concerning the rupture XfP for a smooth wall, as well as the rupture AwXfP 
for both smooth and rough walls, the same remarks apply as made in Section 562.

Fig.56D: Actual Rupture XfP Fig.56E: Actual Rupture AwXfP

In spite of the theoretical difficulties ruptures XfP and AwXfP seem to oc
cur in nature. Pig.56D shows an actual rupture XfP, corresponding to £ = 0 and 
positive rotation (glass wall). Its contour agrees very well with the values cal
culated above. Pig. 56E shows a rupture AwXfP, corresponding to £ = 0.20 and posi
tive rotation (glass wall). 57 * * * * *

57. RUPTURES AwR AND PfA

571. Rupture AwR

Whereas there is usually no gap between the ruptures A and AaR, such a gap
exists in the case of cohesionless, unloaded earth for positive rotation of a
smooth wall, viz. in the interval 0.364 < £ <0.5. This gap is filled by the rup
ture AwR (Fig.57A), which can be calculated as described in Section 462.
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Fi g.57A: Rup ture AwR

As we are only interested in the special 
case mentioned above, we have p=c = a = 6 = 0, 
h = 1 and y = 1. Hie heights are then given by:

h2 = 2£ hi = 1 - 2£ 5701-02

For the R-rupture in the upper zone the 
formulae 5412-13 and 5415-17 are valid. Further 
we have:

Ei = H! Zi = iht 5703-04

The stress at the lower point of the R- 
line is given hy 5416, and the stress at the 
upper point of the A-line can then be found 
from 3428 with (32 = 90°, oti = 0° and j = 0:

ti = (l-h2) sln50tg~IPi > tan2 (45°+ ifi) 5705 
sin #2

We can now calculate the A-zone as described in Section 422. By insertion 
of p2 = 90° and 5705 in 3223 and 3325, and of these in 4213, we get with 6 = 0:

J_ = (Glz- Vlz- Vjf* sin 2cpj) sin a2 + 
h2 v|x sin(a2-(P!) tan2(45°+ i<Pi)

5706

With an arbitrary value of a2 we find the corresponding h2 from 5706. Next, 
we find £ from 5701, hi from 5702, Ei = Hi from 5417 and Zi from 5704. Further, 
when t2 has been calculated by means of 5705, we can find E2 = H2 from 4214 and 
z2 from 4216. X = 2E and r\ = z are then given by 4616 and 4618. Finally, Xf, w 
and xy are determined as described in Section 533 (with Xx = 3). 572

For cp2 = - CPi =

oOC
O1 (pos. rot.) we know that a2 must lie between 54.2°

(Section 533) and 60° (Section 543). The results of the calculations are given
in the following table:

Oh h2 £ X n Xf (*) \y
54.2 1.000 0.500 0.439 0.564 0. 224 0.725 0. 230
55.5 0, 945 0.473 0.464 0.574 0.215 0.708 0. 228
57.0 0.878 0. 439 0.518 0.590 0. 205 0.674 0. 223
58.5 0.806 0.403 0.601 0.601 0. 195 0. 628 0.216
60.0 0.727 0.364 0.719 0.604 0. 185 0.572 0.209

572. Rupture PfA

As explained in Section 461, we can only calculate a rupture PfA with a 
given x in the case of frictionless earth. This special case, which only occurs 
for a rough wall, is shown in Fig.57B, where we have <p = 6 = y = p = 0, h = l 
and c = a = 1 (neg. rot.).
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As one set of the rupture
lines in the plastic zone con
sists of circles, with the top 
of the wall as centre, we have:

P2 = 0C2 = TOi-a,) 5707

hi = cos(P,-cti) 5708

h2 = 1 - cos(Pi-oii) 5709

The normal stresses at the
starting points of the two cir
cles are determined by 3414 and 
3350:

j = 0 
5708:

£ = rt = t (1 + cot cti cot 0!)

ai = cot(0i+cti) 5710

i = o” “ o’, + t. 5711

; determined by 4614 with 
by means of 3218 and

5712

6 = 0 and a = 1:

)cot P2] = 1 5713

After having eliminated, by means of 5707-11, all quantities but a, and Pt 
from 5713, it will be found that the resulting relation between at and Pi is 
exactly the same as the relation 5302 (with a = 0) between a and p for the rup
ture A in the case of a smooth wall.

We can therefore use the values of a and 0 calculated in Section 531 for a 
smooth wall. A comparison of 4210 and 5712 will show that £ is also the same. 
After a calculation of a2, P2, hi, h2, a, and o’2 by means of 5707-11 we can find 
vc = E and C = z from 4113 and 4115 (with j = 0). Finally, vcf, u° and are de
termined as described in Section 531 (with vcx = - 2.57).

The results of these calculations are given in the following table

Pi £ VC C vcf u° vc>'

0 45.0 CO 2.571 0. 500 2.57 1.000 2.57
5 45.3 6.155 2.557 0.472 2.59 0.972 2.70

10 46.2 3.224 2. 519 0.438 2.63 0.939 2.85
15 47.6 2.207 2.459 0.400 2. 70 0.902 3.00
20 49.5 1. 675 2.384 0.362 2.80 0.867 3.15
25 51.8 1.344 2.298 0.324 2.92 0.834 3.27
30 54.5 1.117 2. 206 0.289 3.05 0.805 3.36
33.4 56.6 1. 000 2. 142 0.267 3. 14 0. 788 3.41

rot.):
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58. OTHER RUPTURES 

581. More Complicated Ruptures

As we have seen in the preceding sections, the new method enables calcula
tions to be carried out for the simpler ruptures, such as R, P, A, AaR, AaP and 
AwR.

However, we have already met with certain inconsistencies (notably for a 
smooth wall and low negative values of £) as regards the rupture XfP, which show 
that the application of the method is limited. For the rupture AwXfP, it seems 
hardly possible to use the method at all.

Another difficulty occurs in the calculation of the rupture PfA, where the 
location of the rotation centre cannot be determined without a detailed investi
gation of the deformations in the plastic zone. Only in the case of frictionless 
earth is this possible by simple methods.

Moreover, the rupture PfA (as calculated in Section 572 for tp = 0) is actu
ally statically impossible, as Kotter’s equation is not satisfied for the pseudo
rupture-lines in the plastic zone. In spite of this fact the rupture PfA may pro
vide a good approximation, but the actual rupture is probably of the type AfPfA 
(compare Fig. 35F).

A rupture AfPfA occurs probably also for <p =*= 0 when the wall is rough. At 
least, this seems the logical rupture to fill the gap between the ruptures A and 
SfP, as the rupture AfP is kinematically impossible (Section 354). Unfortunately, 
the rupture AfPfA is too complicated for practical calculation, but, as we shall 
see in Section 591, the results can be estimated with sufficient accuracy.

The author’s small-scale model tests, as recorded on the photographs in the 
present Section 5 show that most of the simple ruptures calculated in the preced
ing sections actually occur in nature too. However, they also show that in some 
cases more complicated ruptures will occur. A few examples shall be mentioned.

Fig. 58A shows an actual rupture, corresponding to £ = 0.37 and positive 
rotation (glass wall). In this case we would expect a rupture AaP or AwXfP. Actu
ally, both these rupture-figures occur at the same time, so that we may term this 
rupture AaP + AwXfP (compare Fig. 35F). Fig. 58B shows a similar rupture, correspond
ing to £ =0.26 and negative rotation (glass wall).

Fig. 58C shows another actual rupture, corresponding to £ = 0. 58 and posi
tive rotation (glass wall). In this case we would expect the simple rupture A. 
Actually, the rupture-figure is of a far more complicated type, probably AfX +
AwX (compare Fig. 35F). It will be seen, however, that in the main the deviations 
from the simple rupture A are not very great.
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Fig.58B: Actual Rupture AaP + AwXfPFig.58A: Actual Rupture AaP + AwXfP

More important deviations are found by negative rotation. Fig. 58D shows an 
actual rupture, corresponding to £ = 1 and negative rotation (glass wall). Accord
ing to the theoiy we should have a rupture A, but actually it is probably of the 
type AfAsR (compare Fig. 35F). Instead of intersecting the surface at 90° (Terzaghi 8. htk 
194$), the lowest rupture-line makes an angle of about 45° with the surface. More
over, at the surface it could be observed that a plastic zone of limited extension 
occurred at some distance from the wall.

Fig-58C: Actual Rupture AfX + AwX (?) Fig.58D: Actual Rupture AfAsR (?)
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However, all the more complicated rupture-figures mentioned above are far 
too difficult for practical calculation. We shall therefore use exclusively, as 
approximations, the simple rupture-figures calculated in the preceding sections 
and, in addition, the rupture AfPfA, for which we can estimate the results. By 
means of these rupture-figures we can cover the complete interval - <x> £ £ ^ +», 
as shall be shown in Section 591.

382. Less Critical Ruptures

In addition to the ruptures calculated in the preceding sections, other 
comparatively simple ruptures have been investigated but have been found to be 
less critical, as they involve greater work having to be done by the earth press
ure acting upon the earth (see Section 357). Naturally, only such ruptures can be 
compared which correspond to the same rotation centre (5) or the same pressure 
centre (C, 6 or h).

As an example may be mentioned that for negative values of 5 and a smooth 
wall it has been found that the rupture X is less critical than XfP, which again 
is less critical than E. Correspondingly, for low positive values of l and a 
smooth wall, the rupture AwX is less critical than AwXfP, which again is less 
critical than AwR, which is still less critical than AaR.

583 . s-Huptu re s

In the preceding part of Section 5 we have dealt exclusively with rupture- 
figures corresponding to the movement of a rigid wall without yield hinges. As 
soon as a yield hinge develops in a rigid wall, the rupture-figure in the earth 
will usually be of the s-type.

Fig.58E: Actual Rupture PsA Fig.58F: Actual Rupture XfPsAfAsR (?)
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In Section 463, we have seen how s-ruptures can be calculated. However, in 
Section 474, it has also been shown that, at least for active ZsL-ruptures, a very 
good approximation may be obtained in a much simpler way (see p. 136), making use 
of our tentative pressure diagrams.

The author has also made a few model tests with hinged walls. Pig.58E shows 
an actual rupture PsA (compare Fig.35D), corresponding to £t = 1 and fi2 = 0 and 
outward movement of the hinge (aluminium wall). Fig.58F shows the corresponding 
rupture for inward movement of the hinge; it is probably of the type XfPsAfAsR, 
i.e. a combination of a rupture XfP (Fig. 35E and Fig. 56B) for the lower part and 
a rupture AfAsR (Fig.35F and Fig. 58D) for the upper part.

59. EARTH PRESSURE GRAPHS 

591. Friction Angles 0° and 30°

The results of the calculations carried out in the preceding sections have 
been put together in Graphs 1-18 in the Appendix. Graphs 1-6 concern frictionless 
earth (q> = 0°), Graphs 7-10 and 17-18 weightless earth (cp ■ 30°) and Graphs 11-16 
cohesionless, unloaded earth (<p = 30°).

The dimensionless earth pressure constants indicated in the graphs are de
fined by the equations 4119-21 and 4703-04. So far. these constants have only been 
determined for the 3 special cases mentioned in Section 511, but in Section 61 it 
shall be shown, that it is usually a veiy good approximation to assume the law of 
superposition to be valid, provided that the friction angle is the same.

With the exception of Graphs 3, 9 and 13, in which the earth pressure factor 
is given as a function of the location of the pressure centre, all the dimension
less constants are given as functions of the location of the rotation centre (£).

In all the graphs, excepting Graphs 4, 10 and 14, which concern rough walls 
only, two sets of curves are given, one for a perfectly smooth, and one for a 
perfectly rough wall. In cases of imperfectly rough walls it should be possible 
to interpolate. Farther, in Graphs 7-18 (<p = 30°) curves are given both for 
positive and for negative rotation (see Section 472).

In Graphs 7-18 (<p - 30°) we have, for the interval 1. 25 < £ < « and rough 
walls, assumed the rupture AfPfA to occur (indicated by dotted lines). We have 
first estimated the values of p, A, Ay and py (Graphs 7, 11, 16 and 18), which 
evidently cannot involve any important errors. On the basis of these values we 
have then found successively w from 5904, n from 5905, 6 from 5906 and px from 
5103. Finally, the values of tan 6 (Graphs 10 and 14) have been estimated.

Fbr the constants p, px, py and A, Ax, Ay a logarithmic scale is used, 
enabling the determination of these constants with the same relative accuracy, 
independent of their absolute values.

Fbr the quantities which may become infinite, i.e., £ and C. a sort of 
“ semi-inverse” scale is used (B. Jakobsson 1947). The two central quarters of



166 5. The Simplest Coses

the axis represent the interval 0 to + 1 (points on the wall proper). The left 
quarter represents the interval + 1 to + °° (points above the wall) in such a 
way that, taking the distance 0-1 as the unit, the distance from the point + 
to a point £ (> 1) is equal to 0.25 : (£ - -f). Correspondingly, the right quarter 
represents the interval 0 to - co (points below the wall) in such a way that the 
distance from the point - co to a point £ (< 0) is equal to - 0.25 : (£-■§).
Such a scale has the property that two parts of a smooth curve, which meet each 
other at a point corresponding to £ = 0 or £ = 1, will have the same tangent at 
this point.

592. Other Friction Angles

For friction angles other than 0° or 30° the earth pressure constants can 
be calculated by means of the methods and formulae indicated in the previous sec
tions. This is rather troublesome, however, and we shall therefore in the follow
ing indicate a much simpler method, by means of which approximate results can be 
obtained by applying a simple correction to the values found from the graphs for 
<P - 30°.

When the passive and the active zone-ruptures are denoted by the super
scripts p and a respectively, then the following approximate formulae are assumed 
to apply:

K log P30
~a~
Poo

log —a = K log a 
P p3 o

log —a : log P30
a

P30

5901-03

pP is given by 5209 (smooth wall) or 5211 (rough wall), assuming <p positive. 
pa can be found by means of the same formulae, assuming <p negative. Some values 
are indicated in a table in Section 523. In the following table some values of 
the constants pa and K are given. Hie subscripts s and r denote a smooth and a 
rough wall respectively.

<p Pi Ks Kr

0 1.000 0.000 1.000 0.000
5 0. 840 0. 159 0.802 0. 154

10 0. 704 0.319 0. 646 0.310
15 0.589 0.482 0.522 0.471
20 0.490 0. 649 0.422 0.637
25 0.406 0.821 0.340 0.813
30 0.333 1. 000 0. 273 1.000
35 0.271 1. 188 0.218 1.204
40 0. 218 1. 389 0. 172 1.429
45 0. 172 1. 605 0.134 1.684

The procedure is now the following. Corresponding to the given value of £ 
the constants p30, P?o, Pso and X30, \J0, \?0 are found from the graphs for 
<p « 30°. Further, for the given value of <p the constants pa and K are taken from 
the table above. The same applies to pf0-

The constants p, px, py and X, Xx, Xy are then calculated by means of 
5901-02, which are assumed to be valid for all the above-mentioned constants.
They can also be found by means of Graph 19 (smooth wall) or Graph 20 (rough wall).
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Next, w, n and 0 are determined successively by means of the following 
equations, which are derived from 5101-04:

u * 1
x*

xx- 5904-06

Finally, if required, 6P or 6Y can be calculated approximately by means of 
the equation:

tan 6 » VT tan | <p| tan 6 9 0 5907

Example 59a

As an example we shall consider the following case of positive rotation, active pressure 
and a rough wall (rupture A):

i = j = 0 p = c = a - 0 y=l h = 1 <p = 6 = - 20° £ = 0.578

Corresponding to this value of £, but for <p = 30°, we find from Graphs ^ 11 and 16 in X
the Appendix:

X30 = 0.350 X§0 “ 5.66 = 0.215

From the table in Section 592 we find, for V = 20° and a rough wall:

Kr = 0.637 p£ = 0.422 pfo = 0.273

We get now, by means of equation 5902 (or Graph 20):

108 OiT 0-637 logS = 0-069 x

°-637 l0grii= °-840 XX = 2,92

log = 0.637 log = 0.066 Xy = 0.362

Finally, equations 5904-05 give:

y = 1 -
0.495 - 0.362 
2.92 - 0.362

0.773 T) = -s + f x 0.773 0.495 - 0.362 
0.495

0.472

A correct calculation, carried out as described in Section 422, will give the following 
results, when Xx is taken from the table in Section 523:

y = - 36.05° a = 60.0° V = 0.218 3 = 74.95° k = 1.036

X = 0.501 n = 0.484 Xx = 2. 84 W = 0.757 Xy « 0.351

It will be seen that the agreement is fully satisfactory for practical purposes.



6. MOKE COMPLICATED CASES

61. SUPERPOSITION 

611. Frictionless Earth

In Section 5 we have, for frictionless earth (<p * 6 = 0), also assumed 
Y = p = 0. We shall now investigate what takes place when y * 0 and p 0. In the 
case of a horizontal ground surface (i = 0) equations 3414 and 3350 give:

Uo
o’ = p + c cotO+a) a” = p + yh + c cot(3+a) + ctc 6101-02■ J

This shows that the normal pressure has a “hydrostatic” component (p + yh)
and a component which is proportional to c. The latter we have investigated in
Section 5.

If we consider the rupture-line, for which equilibrium exists when y = 0 
and p ' 0, it is evident that equilibrium also exists when y =t= 0 and p + 0, be
cause when i = 0, the hydrostatic pressures in any line are in equilibrium with
the loads G and P above the line, provided that corresponding hydrostatic press
ures act between the wall and the earth. Therefore, we must have:

E = iyh2 + ph + chx Ez = -g-yh3 + ^ph2 + ch2K£ 6103-04 <

where k and C have the values calculated in Section 5. By comparison with the 
general equations 4119-20 it will be seen that for i = 0 and cp = 0, we have
X = p = 1, r\=i and 6 = £.

It should be noted that this simple superposition of the y-, p- and c-terms 
is only exact in the case of i = 0 and = 0.

612. Weightless Earth

In Section 5 we have, for weightless earth (y =0), also assumed c = 0. We 
shall now investigate what takes place when c + 0. In the case of a horizontal 
ground surface (i = 0), equations 3413 and 3318 give:

t’ (p + c cot <p) sinQ+a+tp)
sinO+a)

c
sin <p 6105



61. Superposition 169

, . sm(0+a+q>) , t ct” - (p + C cot <P) ----------------- ----- :------
sin(3+“) sin <p 6106

Hie corresponding normal and shear stresses are found by means of 3312-13:
55

sin(3+a+<p) +
a” = (p + C cot <p) ---r—rz,---— t COS (p - C Cot <psm(3+a)

, . , sin(3+a+q>) *(p + c cot qp) —: Q t'-sin <p sin(3+a)

6107 /

6108 V

This shows that the normal pressure has a constant component -c cot tp and 
a component which is proportional to (p + c cot q>). The shear stress has only 
the latter component. This component we have investigated in Section 5.

Wien p = 1 and c = 0, we know that, for a certain rupture-line, equilibrium 
exists between the surface load h cot 3, the normal earth pressure ph, the tan
gential earth pressure ph tan 6 and the corresponding internal stresses in the 
rupture-line. Equilibrium still exists when all these loads and stresses are mul
tiplied hy (p + c oot q>), and also when c cot q> is subtracted from all the nor
mal pressures. As, however, we get in this way the surface load ph cot 3, and the 
internal stresses defined by 6107-08, we have proved that equilibrium exists for 
the same rupture-line, also when c * 0. Consequently, we have:

E = ph (p + c cot cp) - ch cot q> Ez = p0h2(p + c cot q>) - §ch2oot <p 6109-10

P = ph (p + c cot <p) tan 6P 6111

In the above equations, c and q> should be assumed positive for passive 
pressure and negative for active pressure (p. 58). However, as c and <p only occur 
in the product c cot q>, we could as well assume them to be always positive. Com
paring equations 6109-11 with the general expressions 4119-21, in which c is 
always positive (p. 103), we find then the following relations:

k = (p - 1) cot |cp| y-C ■ (p6 - t) cot|qp| 6112-13

C = (p0 - -|) : (p - 1) a *= c cot <p tan 6P 6114-15

By means of 6112-15 the quantities k, C. a (for 9*0) can be found from 
the values of p, 9, 6p, calculated in Section 5 and indicated in the graphs.
With regard to the tentative pressure diagram (Section 47) it is evident that, 
as we multiply the normal pressures with a constant factor and subtract a con
stant amount, u does not change, whereas we get:

kx = (px- l) cot |cp| = (py- 1) cot|<p| 6116-17

In the equations 6112-17, both cp and c should always be assumed positive, 
whereas 6p and a may be positive or negative, according to the direction of the 
tangential earth pressure.

It should be noted that this simple superposition of the p- and c-teims is 
only exact in the case of i = 0 and y = 0.

...
V
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6 13. Gene ral Cas e

In the general case a superposition of the separately calculated y-. p- and 
c-terms is only exact, if we have found the same rupture-line in each case. This 
condition is generally not fulfilled, except when we have (3 = a in each separate 
case.

However, in spite of this it is usually (for i = 0) a very good approxima
tion. and on the safe side, to superpose the separately calculated y-, p- and 
c-terms according to the following formulae (compare 4119-21 and 4703-04):

E - 5yhsX + php + chic Ez = ?yh3Xn + ph2p0 + ch6118-19

P = iyh2X tan 6Y + (php + chx) tan 6p + ah 6120

ex = ydXx + ppx + ckx = ydXy + ppy + CKy y = uh 6121-23

For <p = 30° the quantities X, Xx, Xy, q, 6y and p, px, py, 0, 6p can be 
taken from Graphs 7-18 in the Appendix, and the same applies to w. The quantities
k, kx, k7, C, a cannot be taken from Graphs 1-6, which are valid for cp = 0° only,
but must be calculated by means of 6112-17.

When 0° 4= cp 4= 30° we determine first the quantities X, Xx, Xy, 6y and p, px, 
py, 6P for tp * 30° (by means of the graphs), and then the corresponding values
as well as n. 9. w for the actual cp (by means of 5901-07). Finally, we calculate
K, kx, Ky, C, a (by means of 6112-17).

Example 61a

As an example we shall consider the following case of positive rotation, active pressure 
and a rough wall (rupture A):

i = j = 0 cp = 6 = - 30° c - a = - 0. 5 t/m2

Y = 1 t/m3 p = 7 t/m2 h * 10 m l = 1

By means of Graphs 7-18, and the formulae 6112-17 (with <p positive), we find the follow
ing constants:

X = 0.285 q = 0.455 W = 0.895 Xx = 5.66 Xy = 0.225

p = 0.320 0 = 0.710 Px = 1.60 py = 0. 170

X = -1. 18 C = 0.400 Kx = 1.04 Ky = -1.44

With these values the formulae 6118-19 yield the following results (assuming c positive):
lk,2f ZLM 5,°l

E = i x 1 x 102 x 0.285 + 7 x 10 x 0.320 - 0.5 x io x 1. 18 = 30.7 t/m

Ez = \ x x x io3x 0.285 x 0.455 + 7 x 102x 0.320 x 0.710 - 0.5 x l02x x. xg x 0.400 = 200 tm/m
£,M $4 IS'S l°>,k

A correct calculation, carried out as described in Section 422, will give the following 
results:



(so°

a. = 30° p = k = 11.55 m E = 30.7 t/m Ez = 206 tm/m

It will be seen that the agreement is very good in this case.
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62. EFFECT OF WATER PRESSURES 

621. Hydrostatic Water Pressures

If a ground water table is present, and if the same water level occurs at 
both sides of the wall, then the only effect of the water pressures will be to 
produce an uplift on the submerged parts of the soil and the wall. The water 
pressures proper on the two sides of a thin wall will cancel each other. In the 
calculation of the earth pressures the ground water table must be considered as 
an internal boundary, below which the effective weight of the earth should be 
equal to the submerged unit weight, i.e., reduced for uplift.

We denote by Yw the specific gravity of the water (yw = 1 t/m3), and by ys 
the specific gravity of the solid particles (usually yg - 2.65 t/m3). Further, 
the porosity n is defined as the ratio between the volume of the voids and the 
total volume of the soil. We have then:

Total unit weight of dry earth: Ys+a = (l-n)yg = y 6201

Total unit weight of saturated earth: Yg+ * (l~n)Ys + nyw = Y 6202

Submerged unit weight of saturated earth: Ys+W_u = (l-n)(yg-yw) = y’ 6203

When different water levels exist on the two sides of the wall we must dis
tinguish between hydrostatic and hydrodynamic water pressures. If the wall and 
its foundation are impermeable, the water pressures are hydrostatic, as in this 
case no ground water movements take place.

In the case of hydrostatic water pressures we can calculate the water press
ures and the earth pressures (with submerged unit weights under the water table) 
separately and add the results. In the design of a structure both kinds of press
ures must, of course, be considered together. If, for exan^le, a sheet wall is to 
be designed for a differential water pressure, this pressure must be entered into 
the equilibrium conditions governing the design of the wall.

In fine-grained soils the capillary forces will cause the water to rise to 
a certain height hc above the hydrostatic water table. We can, also in this case, 
consider the water pressures and the earth pressures separately, when the follow
ing facts are taken into account.

Above the normal ground water table negative water pressures occur, start
ing with zero and ending with - Ywhc at the upper boundary of the zone of capil
lary water. In the calculation of the earth pressures the submerged unit weight 
should be used, not only below the ground water table but also in the whole zone
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of capillary water. In addition, the effect of the capillary forces on the earth 
pressures must be considered by assuming a surcharge pc = ywhc acting at the upper 
boundary of the zone of capillary water.

In coarse sand and gravel the problem of capillary rise can be disregarded 
completely, because hc is very small. For fine sand and silt, however, it may be 
necessary to reckon as described above, when the soil is partly submerged.

In clay, considered as a frictionless material, the outlined method leads 
to exactly the same results as a simpler method consisting in assuming, above the 
normal ground water table, full unit weight and no water pressures. We can also 
disregard the water pressures below the water table »hen we reckon with the full 
unit weight of the soil, but in that case a possible water pressure on the other 
side of the wall must, of course, be taken into consideration.

622. Hydrodynanlc Water Pressures

When different water levels exist at the two sides of a wall, and when the 
wall or its foundation is more or less permeable, ground water movements will 
occur, resulting in hydrodynamic water pressures.

In this case the water pressures can be determined by the construction of 
a flow net (Terzaghi 1947, Taylor 1948). Each small earth element will then, in 
addition to the gravity force and the hydrostatic uplift, which are both vertical, 
be subjected to a force proportional to the pressure gradient and acting in the 
direction of this gradient. As the latter force is generally neither constant 
nor vertical, this means that, strictly speaking, we cannot use any of our formu
lae, because they are all based on KStter’s equation, which presumes the mass 
forces to be constant and vertical.

However, many problems involving hydrodynamic water pressures can be solved 
approximately tay means of the methods and formulae developed in the present work. 
Por this purpose we need only assume that the pressure gradient is constant and 
vertical. As this is usually a rather crude approximation there would be no point 
in calculating the corresponding water pressures very accurately. Therefore, the 
approximate calculation is proposed to take place in the following way.

By means of a rough flow net we determine an approximate value of the ave
rage hydraulic gradient for each side of the wall. The gradient i is assumed po
sitive when it is directed downwards, otherwise negative. Further, this gradient 
is assumed to have two effects when, as usual, we consider water pressures and 
earth pressures separately. First, it increases the effective unit weight of the 
soil proper by an amount iyw and, second, it decreases the effective unit weight 
of the water in the ground by the same amount iyw. Thus we have:

Effective unit weight of earth: Ys+w-u+i = (l_n) (Ys~Yw) + iYw = Y” 6204

Effective unit weight of water: yw.^ * (l-i)yw - y’^ 6205

In clay, considered as a frictionless material, the two above-mentioned 
effects will cancel each other. Here we can, therefore, disregard the hydrodyna
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mic water pressures and reckon either with hydrostatic water pressures and sub
merged unit weight of the soil or (as explained in Section 621) with no water 
pressures at all but full unit weight of the soil.

63. STRATIFIED EARTH 

631. Line-Rupture

We shall now investigate the 
case of stratified or layered earth. 
In the present Section 63, we shall 
consider horizontal layers and a 
vertical wall, but, in principle, 
similar investigations can be made 
for layers and walls with any incli
nation.

Pig.63A shows a simple line- 
rupture through two different layers 
The upper layer is characterized hy 
the constants Yi. clt ai, and the 
lower layer by y2, c2, a2. On top of 
the upper layer acts a surcharge p1( 
and at the internal boundary may 
act, in the case of capillary press
ures (Section 621), another sur
charge p2 = y^.

E stc é

Fig.63A: Line-rupture in strati fied earth

We have seal in Section 346, that we can only solve the problem when all 
layers have the same friction angle. We assume, therefore, that we have <p2 = <p2 

= qp and 62 = 62 = 6. At the point where the rupture-line intersects the internal 
boundary the boundary condition 3437 must be used.

From Fig. 63A the following geometrical relations may be derived:

cot P2 = f-1
h2

tan a2

cos(2ai+p2+ot2) = cos(P2+a2)

Pi = P2 + a2 +

2hj. . .sin a2 sin p2 h2

y w>
6301-02

16303 '

hi, h2 and x are given quantities. With a chosen value of a2 we find suc
cessively P2 from 6301, a2 from 6303 and P2 from 6302. kt and k2 are as usual de
termined by 3217, whereas W! and w2 are found hy means of 3219.

As we do not know the stresses in the internal boundary, we have only 3 
statical equilibrium conditions, viz. for the whole earth mass above the rupture
line. We have already one unknown quantity (ct2) and can consequently determine 
only two more, viz. the magnitude of the total earth pressure (E) and the loca-
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tion of its pressure centre (z). 
with j = 0, yield:

I co JoO-
We use the equations 4105 and 4116-18 whi ch,

(Hi+ H2) tan 6 - Ui - U2 + aiht + a^ = 0 6304 V

E = Hi + H2 F - E tan 6 + a,h! + a2h 2 6305-06V

Ez = |h2 (E + F cot M + |H,(hi + h2) + jlMw^ w2) - M^- M^- MR- MR^ 6307

Ui and U2 are defined hy 4102. When 6304 is satisfied, a2 has been chosen 
correctly and we find then E, F and z from 6305-07. If 32 - a2 < 0, we must, in
stead of satisfying 6304, assume fi2 = a2, in which case this angle is found di
rect from 6301. 6306 is then useless, whereas 4114 yields F.

ioa
The described procedure is somewhat cumbersome, and we shall therefore in 

the following show that the effects of the stratification can be taken into ac
count in a much simpler, although approximate way, viz. by a modification of our 
tentative pressure diagram. The correctness of this procedure shall be investi
gated by means of examples.

632. Frictionless Layers

In Section 611 it has been shown that for i = 0 and <p = 0 the pressures 
corresponding to y = p = 0 can simply be added to the “hydrostatic” pressures 
(yh + p). This result is evidently also correct when the earth consists of hori
zontal layers with different unit weigits but with the same cohesion.

Our tentative pressure diagram for ? = 0 is normally constructed hy adding 
to the hydrostatic pressure an amount ckx above a point at the height y = u°h, 
and an amount c*y below this point. In the case of layers with different cohe
sions it is proposed to do exactly the same, but to use in the different layers 
the respective values of c (see Fig. 63B). In the n’th layer from the surface we 
have thus either the pressure:

«£ = Y*mhm + Yndn + | Pm + *Xcn 6308

or a pressure e^, which is determined hy 6308 with superscripts y. The depth 
is measured from the surface of the n’th layer.

The pressures ex occur above, and e^ below, a pressure jump, which is lo
cated at a distance y - u°h from the foot of the wall. Other pressure jumps will 
occur at the boundaries between the different layers, unless the cohesion is 
constant.

If the cohesion c varies with the depth according to a certain theoretical 
or empirical law, the pressure diagram is constructed by adding to the hydrosta
tic pressure at any depth, the value of c at this depth multiplied by kx or tcy 
respectively.
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It is easy to show that the proposed procedure leads to the correct result 
in the special case of an R- or S-rupture and a smooth wall, but in general it 
is an approximation only.

Example 63a

Fig.63B: Strati tied 
frictionless earth

As an example we shall consider the following case 
of positive rotation, active pressure and a smooth wall ro
tating about its top (rupture A):

hi = 5.3 m

h2 = 3. 7 m

Pi = 2 t/m2

By means of 
smooth wall:

U° = 0. 705

Yi * 1.6 t/m3 

y2 =0.8 t/m3 

p2 - 0 a = 0 

Graphs 5-6 we find

Kx = 2

Ci = 1.0 t/ma

c2 = 1.6 t/m2 

tp = 0 l = 1 

for & = 1 and a

Ky = - 3.22

The corresponding pressure diagram is shown to scale 
in Fig. 63B. We find by means of 6123 and 6308:

y = 0.705 (5.3 + 3.7) = 6.35 m

ef = 1.6 dj + 2 + 2 x 1.0 = 1.6 di + 4 (t/m2)

e? = 1.6 dj + 2 - 3.22 * 1.0 = 1. 6 dt - 1.22 (t/m2)

e? = 1.6 x 5.3 + o.8 d2 + 2 - 3.22 x 1.6 
= 0. 8 d2 + 5. 33 (t/m2)

For this pressure diagram we find:

E = 55. 1 t/m Ez - 232 tm/m

If a correct calculation is carried out as described in Section 631, we get:

01=05= 16° P, = 74° Pj = 42° kj = k2 = 5.52 m

E = 57.9 t/m Ez = 239 tm/m

The agreement may be considered satisfactory for practical purposes.

633. Layers with the Same Friction Angle

In the case of i = 0 and p = c = 0 our tentative pressure diagram is normal
ly constructed by multiplying the hydrostatic pressure by a factor \x above a 
point at the height y = wh. and by a factor \y below this point. In the case of 
layers with different unit weights, but with the same friction angle, it is pro
posed to do exactly the same (see Pig.63C).

If surcharges p are present they are multiplied by the factor px or p^, 
whereas the remaining part of the hydrostatic pressure is multiplied hy Ax or \y.
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If the layers have also different cohesions, these are taken into 
same way as for frictionless earth, but the corresponding factors 
be found from 6116-17. In the n’ th layer from the surface we have 
pressure:

en ■ V
n-1

Z
1

Ym^m Yn^n

account in the 
kx and x? must 
thus either the

6309

or a corresponding pressure ej/. The main pressure jump is located at a distance 
y = wh from the foot of the wall.

It is easy to show that the proposed procedure leads to the correct result 
in the special case of an R- or S-rupture and a smooth wall, but in general it 
is an approximation only.

Example 63b

Fig.63C: Stratified 
cohesionless earth

As an example we shall consider the following 
case of positive rotation, active pressure and a smooth 
wall rotating about its top (rupture A) :

^ = 3.7 m Y, = 1.8 t/m3 <p = 30° £ = 1

hj = 5.5 i Yj = 1.0 t/m3 p = c = a = 6 = 0

By means of Graphs 15-16 we find for £ = 1 and 
a smooth wall:

U = 0.815 Ax = 3 Ay = 0.260

The corresponding pressure diagram is shown to 
scale in Fig. 63C. We find by means of 6123 and 6309:

y = 0.815 (3.7 + 5.5) = 7.50 m

e? = 3 x 1.8 d, = 5.4 dt (t/m2)

e{ = 0.260 x 1.8 d, = 0.468 d4 (t/m2)

ej * 0.260 (1.8 x 3.7 + 1.0 d2)
= 0.260 d2 + 1.73 (t/m2)

For this pressure diagram we find:

E = 23. 8 t/m Ez = 113 tm/m

If a correct calculation is carried out as described in Section 631, 

<*! =8° a2 = 13.5° Pi = 82° = 60.5° kt = 3. 75 m

E = 23.0 t/m Ez - 110 tm/m

we get:

k2 = 6.30 m

The agreement will suffice for practical purposes.



63. Stratified Earth 177

634. Layers with Different Friction Angles

Fig.63D: General case 

of strati fied earth

In the case of layers with different 
friction angles it is not possible to carry 
out an “ exact” calculation fcy means of the 
present theory. The reason is explained in 
Section 346. However, as this case is often 
encountered in practice, the following tenta
tive solution is proposed (see Pig. 63D).

A pressure diagram is constructed hy 
multiplying the hydrostatic pressures by \x 
or A* (for the y-terms) respectively by px 
or py (for the p-terms). Possible cohesions 
are multiplied hy kx or Ky and are added. Por 
each separate layer the respective values of 
the different constants are used. In the n’ th 
layer from the surface we have thus, either 
the pressure:

+ ?n 2 pm + Kncn 63:10

11-1
l ^m^m + Ync\i

or a pressure erj, which is determined by 6310 
with superscripts y. The depth is measured 
from the surface of the n’th layer.

The pressures ex occur above, and below a pressure jump, which is locat
ed at a distance y from the foot of the wall. In order to determine y we first 
calculate the different values yn = wnh, all corresponding to the same £ = x : h, 
but to the different friction angles tpn. Only such pressure jumps, which prove to 
be located in the layer to which the corresponding <p and u belong, are assumed to 
actually occur.

Fig.63E: Different pressure diagrams for stratified earth
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Usually, only one pressure jump fulfils this condition, but in special 
cases two may occur, or none at all. Fig.63E illustrates these possibilities for 
the case of two different layers. The pressure diagrams corresponding to the con
stants of the upper layer are shown in unbroken lines, whereas those correspond
ing to the constants of the lower layer are shown in dotted lines. In addition 
to the pressure jumps mentioned above, other pressure jumps will occur at the 
boundaries between the different layers, unless qp and c are constant.

64. PARTLY UNSUPPORTED EARTH FRONT

641. General

In Section 5 it has been assumed that the earth particles next to the wall 
must have the same normal movements as the wall, although they may have other 
tangential movements. This assumption is evidently correct for cohesionless earth, 
but for earth with cohesion the possibility exists that part of the earth front 
can stand unsupported while the wall moves away from it.

However, there is some evidence that this is a theoretical possibility only, 
and that actually the earth will follow the wall completely, even when it has co
hesion (Tschebotarioff 1948). Therefore, we shall generally consider it a suffi
ciently good approximation to use the results found in Section 5, also in the 
case of earth with cohesion. In order to be on the safe side we shall, however, 
disregard possible negative pressures between wall and earth.

On the other hand, when the earth is able to stand unsupported to a consi
derable height, it may be of interest to investigate the special ruptures which 
will occur when part of the earth front does not follow the wall.

If the upper part of the wall moves away from the earth (neg. rot.), we may 
get ruptures of the types RsA, PsA (Fig. 35D), Aw (Fig. 35G) or AwRsA, AwPsA, AaRsA, 
AaPsA (Fig. 35F).

If the lower part of the wall moves away from the earth (pos. rot.), we may 
get ruptures of the types AsR, AsP (Fig. 35D) or wR, wP (Fig.35G).

A rupture RsA, PsA, AsR or AsP can, if required, be calculated as described 
in Section 463. The ruptures AaRsA, AaPsA, AwRsA and AwPsA can in principle be 
dealt with in a similar way as the simpler ruptures AaR, AaP, AwR and AwP. How- 

■'ever, in all these cases the result of the calculation will, to a considerable 
extent, depend on the actual relation between yh. P c, as the law of super
position is not even approximately valid for cases of unsupported earth fronts.

Only for the ruptures wR, wP and Aw can general results be derived. We 
will therefore investigate these ruptures, but shall for the sake of simplicity 
confine ourselves to the case of frictionless earth, a vertical wall and a hori
zontal ground surface.
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642. Ruptures wR and «P

P

Fig.64A: Rupture wZ

A rupture wZ is shown in Pig. 64A.
It occurs only for positive rotation and 
0 < £ < 1. Hie rupture wR occurs when the 
wall is smooth, and the rupture wP when 
it is rough. We have:

h2 = x hj = h - x 6401-02

On the lower part of the wall the 
earth pressure is zero, and for the upper 
part we have:

= yd + p + CKX 6403

= iyh? * ph2 + ch^* 6404

= + + -|chjicx 6405

where kx = 2 for rupture wR (smooth wall), whereas kx = 2.57 for rupture wP 
(rough wall). The pressure distribution is shown in Fig.64A.

643. Rupture Aw

P The rupture Aw is shown in Fig.64B. It 
occurs only for negative rotation and 0 < £
< (Actually, the upper limit must be lower 
than £ = -§, as for small values of hi the 
tensile strength of the material will be ex
ceeded between the ground surface and the 
upper part of the rupture-circle.) We have:

h2 = 2x ht = h - 2x 6406-07

On the upper part of the wall the earth 
pressure is zero, and on the lower part we 
can calculate it as for a line-rupture. How
ever, as mentioned in Section 462, we must 
assume p = 0, i = 90° and f?2 = 90°, because 
the A-line ends at the free vertical earth 
front. We get then from 3412:

Fig.64B: Rupture Aw a2 = c cot a 6408

470432
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Ety insertion of 6408 in 3353, and of this as well as 3208 in 4204 we get 
(with j = 6 = 0 and i = 02 = 90°):

c V£x - a2 = 0 6409

For a smooth wall (a2 = 0) 6409 gives a2 = 66.8°, with which 4207-09 yield:

E, = |yh2 + 2.76 ch2 E2z2 = |yh2 + 0.690 ch? 6410-11

For a rough wall (a2 = c) 6409 gives a2 = 90°, with which 4207-09 yield:

E2 = ?yh\ + 3.14 ch2 E2z2 = £yh2 + 0.785 ch2 6412-13

The above results correspond to a pressure distribution as shown in Pig. 64B 
We have, above and below the rotation centre respectively:

eg = y(d - h2) eg = y(d - h2) + ctcy 6414-15

where xy = 5.52 for a smooth wall and xy = 6.28 for a rough wall.

65. SLOPING SURFACE AND INCLINED WALL 

651. Rupture P

In the case of a sloping surface (angle i with the horizon) and/or an in
clined wall (angle j with the vertical), a zone-rupture is generally of the type 
P. Only in special cases may we get the rupture R, viz., when v’ from 3405 is 
equal to v” from 3419.

If the lowest rupture-line is approximated by one straight line, we get, 
for cohesionless earth, the usual formulae 2105-06 from Coulomb’s theory. However, 
this is somewhat (for passive pressures, considerably) on the unsafe side, and in 
the general case c + 0 * <p the results become rather complicated.

When the rupture-line is approximated by two strai^it lines with a circle 
in between, we can find rather reliable results in any separate case (Section 
431), but general formulae cannot be derived. Therefore, we shall develop in an
other way a set of general and comparatively simple formulae, which are approxi
mate but more accurate than Coulomb’s and usually on the safe side.

The actual rupture-line makes, with the horizon, an angle v’ at the surface, 
and an angle v” at the wall. These angles are in the general case determined hy 
3405 and 3419 respectively.

The stress t’ at the surface is determined hy 3411 (with 0 + a = v’), and 
the stress t” at the wall can be found hy one or more applications of 3318, if 
the chord lengths in the rupture-line are known. Finally, e^ can be calculated 
from t” by means of 3423 (with 0 - a = v"). In this way we get the following 
equation for e^-:
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ef
cos 6 cos(v* 
cos(v”+<p+6

C(tt-l)' 
sin cp

cos 6 sin(v”+<p-j) (c + a)cos(v”+cp+6-j)

cos 6 COS(v”-j) r . -1cos(v”+<p+6-j) sin(v’-i) Lp Sln(v +v) + c cos(v +<P-i)J 6501

where K is a function of the geometrical parameters of the rupture-line.

Comparing 6501 with 4125 (in which c is always positive) and using 3418 as 
well as 3319 (with 2a = v’ - v") we can find the following general formulae:

cos 6 sin(v’+cp) cos(v”-j) 2u(v’-v*’)
P sin(v’-i) cos(v”+<p+6-j) 6 6502

T sin(v’+cp-i) 1 .. .
* ~ [_p ~~sin(v’ +cp) -1JootM 6503

As the exponential function in 6502 is equal to t* (3319). it can, for 
<p = - 30°. be taken from Tables 2-3 in the Appendix, assuming a = •|(v’ -v”).

Equations 6502-03 are exact, apart from the possible approximation involved 
in using 3418. However, as we do not know the chord lengths in the rupture-line, 
we cannot find an exact general expression for X.

In the simple case of one straight rupture-line, we would have v’ = v” = (3, 
tt = 1 and K = k sin(8+cp). Using also 3202 we find, by comparing 6501 with 4125, 
the following relation, which is exact for a straight rupture-line, and may be 
used as an approximation, when the rupture-line is not straight:

X = p cos(j-i) 6504

In order to obtain an idea of the error involved in using 6504, we note 
that this equation yields X = p for i = j = 0. In Sections 522-23 we have, for 
cp = 30° and a rough wall, found pa = 0.273 and Xa = 0.266, as well as pp = 5.03 
and XP = 5.66. This shows that the error is insignificant for active pressures, 
whereas it is of the order of 10% (on the safe side) for passive pressures. For 
comparison it may be mentioned that Coulomb’s formula (2106) yields pa = Xa =
0 . 257 and pp = Xp = 8.75.

In the special case of cohesionless earth (c = a = 0), the angles v’ and 
v” are determined hy 3408 and 3419:

cos(2v’+<p-i) = - Sln 1 cos(2v”+<p+6-2j) = Sln 6 6505-06
sin cp sin cp

In the special case of frictionless earth (cp = 6 = 0) the angles v’ and v” 
are determined by 3409 and 3420, whereas 6502-03 are transformed as follows:

cos(2v’-2i) = - — sin i c

o _ sin v’
P

cos(2v”-2j) = ^ 6507-08

sin(v’ -i) 1 vc° = 2(v’-v”) + cot(v’-i) + sin(2v”-2j) 6 509-10
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In all the above equations 6501-10, positive values of a, cp, 6, c and a 
should be used for passive zone-ruptures (pos. rot.), whereas negative values 
must be used for active zone-ruptures (neg. rot.). Only in 6503 is the last <p, 
as indicated, always to be assumed positive. Of the double sign in 6510 the up
per one is valid for passive pressure, and the lower one for active pressure.

As for other zone-ruptures, we may assume that we have n = | and 0 = C =

652. Rupture SfP

This rupture may occur for a “normal” translation of a rough wall, but for 
passive pressure only. If we assume that we have, as for a zone-rupture, r\ = ■§• 
and 0 = C = i (compare Sections 562-63), the actual value of 6 is equal to y - <p 
(4328). In order to calculate p, k and X for the rupture SfP, we need then only 
insert this value of 6 in 3419 and 6502-04.

However, a still simpler, and probably also more accurate, solution may be 
obtained, if we are interested in X only. Por i = j = 0, p = c = 0 and cp = 30° 
we have investigated the rupture XfP (Section 563) and have found that X for rup
ture SfP (5.16) is very nearly equal to p for rupture P (5.03). We shall assume 
this to be approximately correct for other values of i, j and cp also, but accord
ing to 6504 we shall multiply hy cos(j-i). Consequently, X for rupture SfP may 
be determined approximately hy 6502 and 6504 with 6 = cp.

Example 65a

As an example we shall, for a sloping surface, determine X corresponding to a translation 
of a rough wall (passive rupture SfP). The given quantities are:

i = - 20° j = 0 <p = 30° p = c = 0 £ = “

We find, by means of 6505-06 with 6 - cp:

cos(2v' +30°+20°) = 0.342 : 0.5 = 0.684 V = - 1.5°

cos(2v"+30°+30°) =1 V’ - - 30°

Finally, 6502 and 6504 give, with 6 = cp:

0.866 x 0.477 x 0.866 2 « 0.577 » 28.5 x it : 180 _P *------„ ------ e -2.32

X = 2.32 x 0.940 = 2.18 n * i
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71. RETAINING RALLS

7 11. Sene ra1

We consider here the general case of a retaining wall with an inclined 
back which makes an angle j with the vertical (Pig.71A). Hie ground has a sloping 
surface, making an angle i with the horizon, and is loaded hy a vertical surcharge 
p per unit area of the sloping surface, i and j should be given their proper 
signs; in Fig. 71A they are both positive.

A retaining wall, which is founded direct on the ground, will, as explained 
in Example 36f, in the state of failure rotate about a point below its base. The 
same will usually be the case, if the wall is founded on piles. This means that 
the rupture-figure in the backfill will usually be of the type p or, in special 
cases, R. As the pressure is active, we have the following expressions for the 
earth pressures on the back of the wall (homogeneous earth):

e^ = ydXa + ppa + CKa fj = e^j tan 6a + aa 7101-02

Ea = |yh2Xa + phpa + chKa Fa - Ea tan 6a + haa 7103-04

Eaza = ^yhsXa + jph2pa + ich2ica 7105

Earth with cohesion is able to stand unsupported to a certain critical 
height hc, which can be determined approximately by putting Ea * 0 in 7103 and 
using the constants for a smooth wall:

hc £p| + 7106

According to 7101, negative pressures may be found on the upper part of the 
wall to a depth d°, which is determined by putting e| = 0 in 7101:

ppa + cxa 
yXa 7107

In order to be on the safe side, it is recommended that such negative press
ures be disregarded, in which case we find (for homogeneous earth):
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Ea = 5Y^a(h-d0)2 za - i(h-d°) F* = Ea tan 6a + aa(h-d°) 7108-10

In the formulae 7101-10, the cohesion c should be assumed positive, whereas 
*a, 6a and aa are negative. Fbr a smooth wall we must put 6a * aa = 0, and for a 
rough wall 6a = - |<p| and aa = - |c|. Fbr an imperfectly rough wall intermediate va
lues may be used.

If the inclination of the back of the wall exceeds the inclination of the 
pseudo-rupture-lines in a Rankine zone, an elastic zone will occur immediately 
behind the wall, and behind this zone we will have an R-zone bounded by two 
straight rupture-lines through the lower rear edge of the wall. In this case we 
consider the elastic zone as a part of the wall and calculate the earth pressure 
on its rear boundary as for a perfectly rough wall.

In cohesive earth, the tensile stresses in the upper layers may cause the 
formation of open cracks in the earth or between the wall and the earth. If sur
face water enters sucn a crack, the wall will be subjected to water pressures, 
for which it is usually not designed. In order to avoid this, suitable drainage 
should be provided behind the wall, or the ground surface should be covered with 
an impervious layer. * 712

In a rational design, the foundation of the wall also should be investigat
ed for the state of failure, and in that case the earth pressures on the wall 
should be calculated with values of <p and c, to which appropriate safety factors 
have been applied as described in. Section 372.

However, as foundation pressure problems are not dealt with in the present 
work, they must, for the time being, be treated by means of the conventional me
thods, and in that case the earth pressures on the wall should be calculated with 
the actual values of <p and c. Correspondingly, ordinary allowable stresses should 
be used in the design of the wall sections.

712. Sloping Surface and Inclined Back

In the general case of i * 0 4= j the procedure is to determine first v’ and 
v” by means of 3405-07 and 3419. Ihe constants pa, *a and \a are then calculated 
by means of 6502-04.

In the special case of frictionless earth (<p = 0), the formulae 6507-10 are 
used, and in the other special case of cohesionless earth (c = 0), the formulae 
6505-06, together with 6502 and 6504.

As the pressure is active, negative values of p, <f, 6, c and a should be 
inserted in all these formulae, and in 6510 the lower one of the double signs 
should be used.

Examp 1e 71a

As an example, we shall consider an angle-shaped retaining wall with counterforts as 
shown in Fig. 71A. The earth between the counterforts will follow the wall in its movements and 
must, therefore, be considered as a part of the wall. Correspondingly, we must consider a plane
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Fig.71A: Retaining wall

through the back of the counterforts as the “ back” of 
the wall. As this plane goes mainly through earth it must 
be assumed perfectly rough. The fill is clayey sand with 
a friction angle of 25c and a cohesion of 0.5 t/m2. The 
given quantities are:

h = 5 m i = 15° j = 25° p = 2 t/m2

Y * 1.8 t/m3 qp = 6 = - 25° c = a = - 0.5 t/m2 

Equation 3405 yields:

- 0.5 x 0.906 X 0.259 sin(2v’-25°-15°) + 2 x 0.259

+ (- 2 x 0.422 - 0.5 x 0.906 x 0.965) cos(2v’ -25°-15°) =

- 0.117 sin(2v’ -40°) - 1.281 cos(2v’-40°) + 0.518 = 0

By means of 3406-07 we find v* ~ 55. 8°. For a per
fectly rough wall 3419 is reduced to 3422 which yields 
v" = 50°. We get then successively from 6502-04:

a = 0.906 X 0.512 x Q.9Q6 - 2 x 0. 466 x 5.8 x it : 180
P 0.653 x 0.906 6 = 0. 645

Xa = j^-645 5!2 273 ■ 1] x 2.14 = - 1.40 Xa * 0.645 x 0.985 = 0.635

The corresponding unit earth pressures are found from 7101-02 (with c positive):

e| = 1.8 X d X 0.635 + 2 x 0.645 - 0.5 X 1.40 = 1.14 d + 0.59 (t/m2) 

fj = - (1. 14 d + 0.59) X 0.466 - 0.5 = - 0.53 d - 0.77 (t/m2) 

whereas 7103-05 give: Ea = 17.2 t/m Fa = - 10.5 t/m za ~ 1. 81 m

For comparison it may be mentioned, that a graphical extreme-calculation according to 
Coulomb’s method has given Ea - 17. 6 t/m.

713. Horizontal Surface and Vertical Back

For the case of i * j =0, the constants ps = (smooth wall) are given 
by 5209 or 5216, whereas pr and Xf (rough wall) are given by 5211 and 5223 re
spectively. Par active pressure, negative values of <j> must be used in these for
mulae. Some values of the constants are given in a table in Section 523. If re
quired, y. can be calculated by means of 6112.

Fbr the critical height hc of a vertical bank, we find by inserting 5209, 
5216 and 6112 in 7106 (and changing the sign of <p) the equation:

hc = - [4c tan(45°+ h) - 2p] 7111

in which positive values of <p and c should be used.

In the special case of frictionless earth (tp = 0) we have pa = Xa = 1 and 
ic| = - 2 or = - 2.57 respectively (see 5203 and 5205). For the critical height, 
we find by putting <p * 0 in 7111:
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hc = Y (4c - 2p) 7112

where c should be assumed positive. In the special case of p = 0, equation 7112 
gives hc = 4c : y. A more correct value can, however, be found by means of the 
first table in Section 531. Hie pressure component proportional to c can only 
cancel the hydrostatic pressure when C = i, and this is found for a = 15°. To 
this corresponds * = 1.916, giving hc = 3.83 c : y.

Example 71b

In this example we shall calculate the active earth pressure on the back of an anchor 
slab (see Pig.72C), which shall be designed in Example 72b. The slab is vertical, rough and 
partly submerged, and the ground surface is horizontal. The fill consists of coarse sand with 
an actual friction angle of 36°. Applying a safety factor 1.25 to P, we find that the calcula
tion should be made with <P - 30°. The given quantities are (compare Pig. 72C):

i = j - 0 hi = 2 m Yi = 1.8 t/m3 cp = 6 = - 30°

p = 1 t/m2 h5 = 0. 15 m ya “ 1.0 t/m3 c = a = 0

From the table in Section 523 we find, for <p = 30° and a rough wall, pa = 0.273 and * 
0.266. Then we get, using 6309 and calculating the hydrostatic earth pressure by assuming first 
full height (hi+h2) and full unit weight (Yi), and subtracting later an amount corresponding to 
the submerged height (h-j) and the differential unit weight (Yi‘Y2):

Ea = £ (1.8 x 2.15s - 0.8 x 0.152) x 0.266 + 1 X 2. 15 x 0.273 * 1.70 t/m

Eaza 4<1.8 X 2.153 - 0. 8 x 0. 153) x o. 266 + \ x 1x2.15s x 0.273 = 1.42 tm/m 

Fa - - 1. 70 X 0.577 = - 0.98 t/m

For comparison it may be mentioned, that a calculation with the Coulomb values Pa = X*) = 
0. 257 would give Ea - 1. 62 t/m. 72 * * * * * * * * * * *

72. ANCHOR SLABS

72 1. General

Pig. 72A shows the general case of an inclined anchor slab (angle j with the
vertical) below a sloping ground surface (angle i with the horizon). It should be
noted that, according to our definitions, i and j have different signs on the two
sides of the slab. In Fig.72A they are positive on the “passive” side, negative
on the “active".

In order to be on the safe side we assume the surface in front of the slab
to be unloaded, whereas behind the slab it is loaded with a vertical surcharge p.
The slab is acted upon hy an anchor pull, having a component A normal to the
slab, and making an angle g with the horizon (positive when the pull is directed
downwards).
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A sec (g+j)

Fi$.72A: Anchor slab in strati tied earth

Prom the surface to the depth ht (measured along the slab) the earth has 
the unit weight Yi. but below this depth the unit weight is y2. However, both 
layers are assumed to possess the same friction angle <p and cohesion c. The boun
dary between the two layers is assumed to be parallel to the ground surface.

For economical reasons the anchor point should be placed at such a level 
that the greatest possible passive pressure is obtained. Graphs 3 and 13 in the 
Appendix show that this would imply the development of a rupture P in front of 
a rou$i slab. However, a passive rupture P with 6 = <p cannot occur here, because 
the equilibrium conditions require the tangential component of the passive press
ure to be equal to the sum of the corresponding components of the anchor pull, 
the weight of the slab and the active pressure on its back (Th. Rasmussen, 1948).

Apart from the rupture P, the rupture SfP is the one which gives the great
est passive pressure (see Graph 13), and to this rupture corresponds a transla
tion of the slab in the state of failure.

For this movement we have behind the slab an active rupture P. i.e. ordinary 
active pressure as on a retaining wall. Ea, Fa and za are consequently calculated 
as described in Section 71, but with reversed signs of i and j. In frictionless 
earth it will usually be found that the depth d° (7107) exceeds h, and in that 
case we must put Ea = Fa = 0 (we presume that care is taken to prevent surface 
water from entering a possible crack between slab and earth or in the earth 
proper). 722

722. Sloping Surface and Inclined Slab

With regard to the passive rupture SfP. the difficulty exists that we 
neither know the actual values of 6 and a, nor the inclination 3 of the S-line. 
However, we have seen in Section 56, that a rupture SfP gives practically the
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same value of z as a zone-rupture, which means that it could just as well have 
been calculated as such, if 6 and a had been known. Moreover, as the actual va
lues of 6 and a are usually comparatively small, the actual rupture-line cannot 
deviate much from a straight line.

Consequently, we shall calculate this rupture SfP as a zone-rupture, using 
a straight rupture-line. However, instead of considering the “passive" earth 
wedge alone and projecting on a line perpendicular to the force E sec 6 (the di
rection of which is unknown here), we shall consider this earth wedge plus the 
slab, and project on a line perpendicular to the direction of the anchor pull.
We get then (see Fig.72A):

R? + Rf - (Gt+ G2 + Gi2+ Gw) cos g + Ea sin(g+j) + Fa cos(g+j) = 0 7201

After insertion of 3208 (with G^2 = 0), 3214 , 3339-40 and 3411 (with p = 0
and a = 0), equation 7201 is found to have the following solution:

cot(P-i) = tan(<p+g+i) + sec(cp+g+i) \j 1 + cos(«p+g+i) 7202

in which the quantities K4 and K6 are determined by the equations:

Ki * ?Yi(h!+ h2)5 K2 « -5(Y!- Y2)h‘ Ka * c(h4+ h2) 7203-05

K* = (K2-K2) sin(g+j-i) + [|gw cos g - Ea sin(g+j) - F3 cos(g+j)J sec(j-i) 7206

Ke = (Ki-K2) cos(j-i) sin(<p+i) + K3 cos <p 7207

When 3 has been determined by means of 7202-07 we should, according to the 
theory in Section 431, find Ep by calculating the passive unit pressures by means 
of 34 23. However, this would be somewhat complicated, because 6 and a are still 
unknown. Fortunately, in the case of one straight rupture-line, the result can 
actually be obtained in a much simpler way, viz. by projecting the forces acting 
on the earth wedge, on a normal to the slab:

EP ■ - Rt90°‘j - R290°‘J + (Gj.+ G2+ G12) sin j 7208

By insertion of 3208 (with GYZ = 0), 3214, 3339-40 (with g = 90°-j) and 
3411 (with p = 0 and a = 0) we find for EP an expression of the form:

EP ■ (K!-K2)Xp + K3kp where: kP = æs v sin(2|3+<p-i-j) 7209-10sin (p-i)

^p = _2PsU~j-) rcos(j -i) sin(3+<p) sin(3+<p-j) + sin j sin(3-i) cos(3-j)l 7211 
sin2(3-i) L J

Next, the normal component of the anchor pull is found by projecting the 
forces, acting on the slab proper, on a normal to the slab:

A = EP - E3 + Gw sin j 7212
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As the rupture SfP is approximately a zone-rupture, the distribution of the 
passive pressure E? may be assumed to be “ hydrostatical”. This means that the 
pressure centres of the components KiXp, K2\p and K3kp are located at the dis
tances l(hi+h2), ih2 and l(hi+h2) respectively, from the foot of the slab. Con
sequently, we get, by taking the moments about the foot of the slab, the follow
ing equation:

Aq « |(ht + h2)K!Xp - éh2K2\p + T(h4+ h2)K3Kp - Eaza + sin j 7213

whicdi determines the proper location (q) of the anchor point.

So far, we have assumed that the anchor slab reaches the surface with its 
top (Pig. 72A). In practice, this will usually not be the case, but theory as 
well as experiments have shown that the resistance of a “buried” anchor slab at 
shallow depth is very nearly the same as for a slab reaching the surface.

Consequently, the calculation can be made as described above, and when the 
necessary depth h has been determined (by trial) so as to give the required value 
of A, the actual height s of the anchor slab can be chosen more or less arbitra
rily. s should, however, never be smaller than |h or 1.5 q and should preferably 
be about fh or 2q.

In order to find the transverse moments in the slab, the total normal 
pressure A is assumed to have a trapezoidal distribution over the actual height 
s of the slab. In that case we find the greatest moment:

M » 2Aq5(s - q)2: s3 7214

Example 72a

Fig.72B: Inclined anchor slab 

in clay with sloping surface

As an example, we shall consider the following 
case of an inclined anchor slab in homogeneous clay with 
a sloping surface (Pig.72B):

i = 20° j * 30° g = - 30° <P = 0

hi ~ 2.5 m h2 = 0 p = 2 t/m2

Yi = 1.6 t/m3 c = 4.5 : 1.5 = 3 t/m2

where we have divided the actual cohesion by a safety 
factor 1.5. the indicated values of i and j are valid for 
the “passive” side; for the “active” side their signs 
should be reversed.

If the depth d° is calculated by means of 7107, 44- 
it is found to exceed hi. Consequently, we can put Ea *
Fa = 0.

In order to find the weight of the slab, we esti
mate that it should be 2.0 m high, 0.3 m thick and made 
of reinforced concrete (unit weight 2.5 t/m3). As we must 
include the earth on top of the slab we get:

X
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G„ = 0.3 (0.5 x 1.6 + 2.0 * 2.5) = 1.74 t/m 

Gwzw = 0.3 (0.5 x 1.6 x 2.25 + 2.0 x 2.5 x 1.0) = 2.04 tm/m 

By means of 7203-07 we can now find the following quantities:

Ki = i x 1.6 x 2.5s = 5 Ka = 0 Ka = 3 x 2.5 = 7.5

K4 = - 5 x 0.342 + 1.74 x 0.866 x 1.015 = - 0.18 KB = 5 x 0.985 x 0.342 + 7.5 x 1 = 9. 19 

With these values 7202 yields:

cot(3-20°) = - 0. 176 + 1.015 \jl - yj| X 0. 985 = 0.830 3 = 70.3°

Next, we calculate xp and Xp from 7210-11:

gP = 0.985
0. 7702

x 1 x 0.999 = 1.66

\P 0.985
0.7702 (0.985 x 0.942 x 0.647 + 0.5 x 0.770 x 0.763) = 1.48

Finally we get. from 7209 and 7212-13:

E13 = 5 x 1.48 + 7.5 x 1.66 = 19.9 t/m _A_= 19.9 + 1.74 x 0.5 = 20,8 t/m

Aq = 4 x 2.5 x 5 x 1.48 + |- x 2.5 x 7.5 x 1.66 + 2.04 x 0.5 = 22. 8 tm/m 

_q_= 22.8 : 20.8 = 1.09 m

We give the slab an actual height s = 2. 00 m. and find then from 7214:

M = 2 x 20.8 x 1.092 (2.00 - 1.09)2 : 2.003 = 5.11 tm/m

For this moment the slab should be designed with “ allowable" stresses of. for exanjile:

Oc = yg- = 120 kg/cm = 2400 _
1.2 2000 kg/cm2

723. Horizontal Surface and Vertical Slab

In the important special case of i = j =0 the equations 7203-05, 7209 and 
7214 are unchanged, whereas the remaining formulae are reduced to the following:

cos(<p+g)cot g = tan(qp+g) + sec(q>+g)

K4 = (Kt - Kj - Ea) sin g + (Gw - Fa) cos g 

K„ = (K, - K2) sin <P + Ks cos cp

= cos tp sin(2P»4>)
sin23

p _ sin2(3+q)) 
sin2 3

7215

7216

7217

7218-19

Ep Aq = i(h1+h2)K1\p - |h2K2\p + |(h1+h2)K3xp - Eaza 7220 - 21
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Example 72b

In this example, we shall design the anchor slab which is necessary for anchoring the 
sheet wall designed in Example 74c (Fig.74E). The fill is coarse sand with an actual friction 
angle of 36°. Applying a safety factor 1.25 to p we find that the calculation should be made 
with <p = 30°. In Example 74c we have found A - 13.3 t/m and, after some preliminary trial, we 
find that the anchor slab should be partly submerged and have h2 =0.15 m (see Fig. 72C). Thus, 
the given quantities are:

i = j = g = 0 hi = 2 m Y, = 1.8 t/m3 cp = 30°

p = 1 t/m2 h2 * 0.15 b Ya = 1.0 t/m3 c = 0

Fig.72C: Partly submerged anchor slab in sand

The active pressures on the back of the slab have been calculated in Example 71b where 
we have found:

Ea = 1.70 t/m EPrP- = 1.42 tm/m F* = - 0.98 t/m

In order to find the weight of the slab we estimate that it should be 1.5 m high, 0.25 m
thick and made of reinforced concrete (unit weight 2.5 t/m3). Subtracting the uplift and adding
the weight of the earth on top of the slab we get:

G* = 0.25 (0.65 X 1.8 + 1.35 X 2.5 + 0.15 X 1.5) = 1.20 t/m 

By means of 7203-05 and 7216-17, we can now find the following quantities:

Kt = $ x i. g x 2.152 = 4.15 K2 - \ x 0.8 x 0.152 = 0.01 K3 = 0

K4 = (1.20 + 0.98) x 1 = 2.18 K6 = (4.15 - 0.01) x 0.5 = 2.07

With these values 7215 yields:

cot g = 0.577 + 1.155^1 + X 0.866 = 2.17 

Next, we calculate \p by means of 7219:

.p 0.8152 
K = 0.4182

P = 24. 7°

o I
Finally we get, from 7209 and 7221-21:

= 3.81
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Ep = (4.15 - 0.01) x 3.81 = 15.8 t/m A_ = 15.8 - 1.70 = 14.1 t/m

Aq = x 2.15 x 4.15 x 3.81 - ^ x o. 15 x 0.01 x 3.81 - 1.42 = 10.0 tm/m 

^ “ 10.0 : 14.1 = 0.71 111

We give the slab an actual height s = 1.50 m. and find then from 7214:

£ = 2 X 14.1 X 0.71s (1.50 - 0.71)s : 1.503 = 2.63 tm/m

The same “ allowable” stresses can be used as in Example 72a.
The calculated anchor pull is somewhat greater than the required 13.3 t/m. as it should 

be. because the anchorage is assumed unyielding in Example 72c. The value found for q shows that 
the anchor point should be located 1.44 m below the surface. As the anchor point of the sheet 
wall lies 1.5 m below the surface (Example 72c), we will very nearly have g - 0 as assumed.

The above calculation shows that in the case considered, the greatest attainable value 
of Xp is 3.81. For comparison it may be mentioned that a calculation according to Coulomb’s 
method (with <p = 30°) would give XP - 3.00 for 6-0, and XP = 4.80 for 6 - Jqj. The Danish Rules 
(1952) require for 6 = |<p. a safety factor of 2.0. but it will be seen that this would give an 
actual safety of about 1.6 only. As we have a safety factor of 1. 25 on U for the earth pressures 
on the anchor slab as well as those on the sheet wall, the “total" safety is about 1.7.

73. FREE SHEET WALLS

731. General

Sy/AS> 'AWAWASP/W
= p.

Meg. Rot.Pos. Rot.

Fig.73A: Free sheet wall

A free sheet wall is a wall which 
has no anchorage or bracing, but owes its 
stability exclusively to the fact that it 
is supported by earth on both sides. We 
shall here consider a vertical wall and 
horizontal ground surfaces which, however, 
may lie at different levels at the two 
sides of the wall (Pig. 73A).

The wall is assumed to be partly 
submerged, the water level on the active 
side dividing the height hi in the parts 
h5 and hg. The corresponding effective 
unit weights are yg and y6 but <p and c are 
assumed to be the same above and below the 
water level. They may, however, have dif
ferent values on the two sides of the 
wall.

If the water levels on the two sides 
of the wall exhibit a small difference 
a differential water pressure with a maxi
mum intensity pw = y^^ will occur. For

99999^^
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the sake of simplicity we shall assume a uniform pressure pw over the entire 
height hg and, as this is somewhat on the safe side, we may, on the other hand, 
disregard the effects of the small hydraulic gradients on the effective unit 
weights of the soil (see Section 622). However, if the difference hw is consider
able, a more correct calculation must be made (see Section 734).

The wall proper has a wei^it and may be acted upon by an exterior force 
with a horizontal component Q (Fig.73A). This force must, of course, be of such 
a nature that it does not restrain the movements of the wall. Finally, the foot 
of the wall is supported by a vertical point resistance S.

If no yield hinge develops, the free sheet wall must,in the state of failure, 
rotate about a point above its foot. This point is located at the unknown height 
x, and we have:

£i * x : hi £2 * x : h2 7301-02

Fbr the right side of the wall in Fig.73A the rotation is negative, and for 
the left side it is positive. At both sides the rupture-figure is, for cohesion
less earth, of the type AaR (smooth wall) or AaP (rough wall).

For the forces acting upon the wall proper we get by vertical projection, 
by horizontal projection and by taking the moments about the pressure centre 
of Q:

S = Gw - Ft - F2 + Q tan g Q = E2 - E, - p^g 7303-04

q(Et - E2) - E, Zi + E2z2 + pwhg(q - 2hg) = 0 7 305
e, (£*-20 + pvr\(^+-q-h<)=0

Equation 7303 is not of primary importance to the main problem, but it can 
be used to investigate whether the wall will rise vertically, viz. when 7303 
gives a negative S. In this case the curves for a rou^i wall in the graphs can
not be used, as they presume horizontal movements only.

E, Ez and F are given by the general expressions 6118-20, which can be used 
direct in the case of homogeneous earth. In cases of partly submerged or strati
fied earth, pressure diagrams must be constructed according to the principles 
indicated in Sections 62-63.

If the dimensions (including q) are given, we can find x from 7305 by trial, 
because E and Ez are functions of £, and both <5’s are functions of x. When x has 
been determined, Q may be found from 7304.

If Q and h0 are given, the problem may be solved by trial, viz. by estimat
ing a value of h2 and calculating the corresponding Q. h2 must then be changed 
and the calculation repeated until the calculated Q attains the required value. 
This is rather involved however and we shall, therefore, in Section 735 indicate 
a much simpler, although approximate method.

In the special case of Q - 0, pw = 0 and a given h0 we must consider h2 

and x as the unknown quantities. They can be determined by means of 7304-05 
which, in this case, are simplified to:



194 7. Practical Earth Pressure Problems

Ei = E2 Z4 - z2 7306-07

The greatest moment in the wall occurs at the point where the transversal 
force is zero. This point divides the height hi in two parts h3 and h4 (Pig. 73A). 
The location of this point as well as the corresponding moment can, of oourse, be 
determined by means of analytical expressions, but in general it is simpler to 
use the pressure diagrams direct.

732. Fr i cti on1ess Earth.

Free sheet walls can seldom 
be made very high. Consequently, 
in frictionless earth, the cases 
of partly unsupported earth fronts
will usually occur (Section 64). 
This means that on one side (neg. 
rot.) we will get a rupture Aw, 
and on the other side (pos. rot.) 
a rupture wR (smooth wall) or wP 
(rough wall).

These ruptures, which, are 
shown in Fig. 35G, have been calcu
lated in Section 64. The corres
ponding pressure diagrams are shown 
in Fig. 73B. It will be seen that ht 
is actually unimportant, as long as 
we have 2x < hi < 2x ♦ hc, where 
hc is defined by 7106.

Ry taking the moments about 
the pressure centre of the force Q 
we get the following equation:

±y(h2- x)2(3q - h2- 2x ) - |y(2x)2(3q - 2x)

+ *cicx(h2- x) (2q - h2- x) - |c*yx(2q - x) = 0 7308

which can be transformed to:

6y x3 + 3 [c(kx + *y) - y(3q - h2)] x2

- 6q [c(kx + Ky) + yh2] x + h2 [3cxx(2q - h2) + yh2(3q - h2)] = 0 7309

From this equation x can be found. Q is then determined by horizontal pro
jection:

aWM'AWAWm'M*!1,

'r' ^>y/ <,\y/A\y/A\»,x\y//

Fig.73B: Free sheet wall in clay

Q = iy(h2- x)s - 2yxa + CKx(ha- x) - cvyx 7310
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Example 73a

As an example we shall consider the following case of a smooth sheet wall in clay, sub
jected to an exterior, horizontal force (compare Pig. 73B which, however, is not to scale):

hi = h2 = 5 m q = 10 m y = i. 5 t/m3 <p = 6 = a = 0 c = 4.5 : 1.5 = 3 t/ms

where we have divided the actual cohesion by a safety factor 1.5.
According to Section 64 we have for a smooth wall: Kx = 2 and Y? = 5.52. Equation 7309 

gives now:
6 X 1.5 x xa + 3 (3 X 7.52 - 1.5 x 25) X2 - 6 * 10 (3 x 7.52 + 1.5 x 5) x 

+ 5 (3 x 3 x 2 x 15 + 1.5 x 5 x 25) = 9 x3 - 45 X2 - 1804 X + 2288 • 0 x = 1.24 ■

If we use 7112 we find hc - 4 x 3 : 1. 5 - 8 m > hi - 2x = 2.52 m. which shows that is
correct to employ the rupture Aw.

Next, the corresponding value of Q is found from 7310:

^ = I x 1.5 x 3.76s - 2 X 1.5 x 1.24s + 3 X 2 X 3.76 - 3 X 5.52 x 1.24 = 8.0 t/m

The depth d (see Pig.73B). at which the transversal force is zero, is determined by the 
equation:

lyd2 + cdK1 - 8 = j x 1.5 x j! * 3 xdx 2 - 8.0 = 0 d = 1.16 m

The corresponding maximum moment in the sheet wall is numerically:

-M_ = Q(q - Ih+ d) - £fd3 ' = 8.0 x 6.16 - x 1. 5 x 1.163 - i x 3 x 1.16s x 2 = 45 tm/m

For a sheet wall of steel 37 the “allowable" stress is 2400 : 1.2 = 2000 kg/cm2. The
necessary section modulus is therefore:

W = 4500000 : 2000 = 2250 cm3/m 733

733. Cohesionless Earth

'AmwwAmmmmwAm

1

Pos Rot. Neg. Rot.
Fig.73C: Free sheet wall in sand

In cohesionless earth a cor
rect calculation becomes rather 
laborious, when hi and h2 are not 
given, because we must estimate h2 

and x independently of each other 
and change them until both 7304 
and 7305 are satisfied. Therefore, 
a simple, approximate method shall 
be indicated in Section 735.

The exact calculation is 
somewhat easier in the special case 
ofc = p = pw = Q= 0 (Pig. 73C).
We get here from 7301-02, 7306-07 
and 6118-19 the conditions:
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Por cp = 30° the problem can be solved in a relatively simple way, viz. by 
means of Graphs 11-12 in the Appendix. Through the point (£ = 0, n = 0) in Graph 
12 an arbitrary straight line is drawn. It will intersect the curve for negative 
rotation in a point (Si, r\i) and the curve for positive rotation in a point (S2, 
ria), satisfying 7311. The corresponding values of and \a are now found from 
Graph 11 and we must then investigate whether 7311 is fully satisfied. If not, 
the procedure must be repeated with another straight line, until satisfactory 
agreement is obtained.

Example 73b

We shall determine the critical ratio m for the case of Q = 0 and <p = 30° (compare Fig. 73C 
which, however, is not to scale). We assume first that the wall is perfectly smooth, and find 
then after some trial that the following values satisfy 7311:

£i = 0.038 T)i = 0.205 = 0.57

S2 = 0.076 n2 * 0-410 \a = 2.28
Jk
h2 = 2. 00 = ms

We then assume that the wall is perfectly rough and find:

£i = 0.060 hi = 0.185 K =0.51
-jp = 2.57 = mr

£a = 0.154 T)s = 0.470 K = 3.35 2 734

734. Hydrodynamic Water Pressures

In the case of hydrodynamic water pressures (Section 622) the potentials 
and gradients can be found by the construction of a flow net. However, for a 
sheet wall in homogeneous earth, sufficiently correct results can usually be ob
tained by means of the following approximate formulae.

If ui and u2 are the potentials at the respective water levels at the two 
sides of the wall, and if hi and h2 are the corresponding heights of the submerged 
earth layers, then the actual potential at the foot of the wall is approximately:

u2\flu + Uifht

^
7312

Now, at the foot of the wall a pressure jump is assumed to occur, with a 
magnitude of 0.3 y (Ui-u2) = 0.3 y^. The average hydraulic gradients at the two 
sides of the wall are then:

ii 0.7 °-7
hi +Vhih2

i2 = 0.7 u2 - u0 - 0.7 hu
Vhih,

7313-14

The corresponding effective unit weights of the earth and the water are 
given hy 6204-05. As h, and h2 in 7312-14 should be the submerged heights of the 
respective layers, we must, for a case such as shown in Fig.73A, substitute hi 
by h6.
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In the special case shown in Pig. 73D 
we have hi = h2 = h and hw = mh. Consequent
ly, we find from 7313-14, the gradients ii = 
-i2 = 0.35 m, and then, by means of 6204-05:

Yl = Y t 0.35 my,,, 7315
Y* w

yWl = (1 ; 0.35 m)Yw 7316
w2

According to the above-mentioned appro
ximation, the differential water pressure on 
the buried part of the wall decreases linear
ly from Ywhw at ground level, to 0. 3 Ywhw at 
the foot of the wall. We get, therefore, the 
following expressions for the total water 
pressure and its moment about the foot of the 
wall:

Q = |h2m(m + 1.3)yw 7317

Qq = -gh3m(m2 + 3m + 2.3) yw 7318

The unknown quantities are m and x. For 
their determination we have the equations 

7304-05, in which we must put pw = 0 and insert the general formulae 6118-19 with 
p = c = 0:

Q = ?h (Y2^2 - Yi^i) Qd = "jh (Y2X2t\2 - YiAihi) 7319-20

Prom 7317-20, the following equations can be derived by elimination of Q 
and q and insertion of 7315:

m2 + 0.35(3.71 + Xt + X2)m + — (Xt - X2) = 0 7321
lw

^m3 + m2 + 0.35(2.19 + X^i + X2ri2)m + — (X,.rii - X2ri2) = 0 7322
Yw

In order to solve these equations we must estimate a value of £ and find 
the corresponding constants Xt and (neg. rot.) as well as X2 and r\2 (pos. rot.) 
from Graphs 11-12. We compute then m from 7321 and investigate, whether 7322 is 
satisfied.

h.-mh

m 1mmiMÆ w/wm

Neg. Rot.Pos. Rot.
Fig.73D: Hydrodynamic pressures 

on free sheet wall

Example 73c

We shall determine the critical ratio m for the following case of a free sheet wall in 
cohesionless sand (Pig.73D):

<p = 30° p = c = 0 Y ” Yw = 1 t/m3
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We first assume the wall to be perfectly smooth and find then, after some trial, that 
& ~ 0.085 is the correct value, giving:

K = 0.82 TU = 0.145 Mt = 0.119 X2 = 2.20 n2 = 0.425 X2n2 = 0.935

With these values we get from equations 7321-22: 

m2 + 0.35(3.71 + 0.82 + 2.20)m + 1(0.82 - 2.20) = m2 + 2.36 m - 1.38 =0 m = 0.48—a----- ----
7 X 0.48s + 0.48s + 0.35(2.19 + 0. 119 + 0.935) x 0.48 * 1(0. 119 - 0.935) = 0 

If the wall is assumed to be perfectly rough, we find for & - 0.155:

Xt = 1.02 T)i = 0.110 XjTli « 0.112 X2 = 3.45 T)s 3 0.470 X2T)2 = 1.62

With these values equations 7321-22 yield:

m2 + 0.35(3.71 + 1.02 + 3.45)m + 1(1.02 - 3.45) = m2 + 2.87 m - 2.43 = 0 mr = 0.68

é x 0.683 + 0.682 + 0.35(2.19 + 0.112 + 1.62) x 0.68+ 1(0.112 - 1.62) * 0

Pig.73D is drawn to scale corresponding to the case of a rough wall. The theoretically 
exact water pressure diagram is shown with a dotted line, and it will be seen that the proposed 
approximation (unbroken line) is a very close one in this case.

735. Approximate Solution

3 ’zzszsmstzsz&z

Aleg. Rot.Pos. Rot.

Fig.73E: Approximate calculation of free sheet wall

In the general case of a 
given h0 and a given Q, an exact 
calculation requires that h2 and 
x be estimated independently of 
each other and altered until 
both 7304 and 7305 are satisfied. 
This procedure is rather labo
rious, however, and we shall 
therefore now indicate a much 
simpler, although approximate 
method (Fig.73E).

We determine first the 
location of the point where the 
transversal force is zero. This 
is easily done, as we have e = 
ex above this point, and these 
pressures are practically inde
pendent of the actual (unknown) 
values of fi, when these are 
small (see Graphs 6 and 16-17).

When we have located the
point of zero transversal force, which lies at the unknown height Ah (* h4 in 
Fig. 73A) above the foot of the wall, we know the heights hi- Ah, h2- Ah and
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q - Ah, and can then calculate the greatest moment M (negative, because it pro
duces compression in the outer side of the wall).

Below the point of zero transversal force the usual pressure diagrams will 
give the pressure distribution shown in unbroken lines in Fig.73E (pw is not 
shown). However, we shall simplify this by assuming the distribution shown hy 
dotted lines. According to this we reckon with a differential pressure, which is 
zero between the two pressure jumps, whereas it has the following numerical va
lues above the upper pressure jump and below the lower pressure jump respectively:

Aex = ej - ef - pw Aey = - e^ + pw 7323-24

Die different unit pressures in 7323-24 should all correspond to the depth 
at which the transversal force in the wall is zero. The equilibrium conditions 
for the lower part of the wall give then:

y1Aey » (Ah - y2)Aex -j(Ah + y2 - y^yiAey = - M 7325-26

From the Graphs 5 and 15 in the Appendix, it will be seen that for small 
values of £ there is a direct proportionality between w and £. Therefore we have:

7327-28

By means of Graphs 5 and 15 we find the following values for <p * 0° and 
cp = 30°. For other values of <p a rough interpolation or extrapolation must be 
made.

Smooth Wall Rough Wall

Neg. Rot. Pos. Rot. Neg. Rot. Pos. Rot.

<p = 0° K, « 1.0 K2 = 1.0 K, - 1.1 K2 - 1.1

q> = 30° Kj = 0.4 K2 = 1.6 Kj = 0. 5 K2 « 1. 8

By insertion of 73 27 - 28 in 7325-26 we get two equations in x and Ah, from 
which we can find:

AeyAh - x(K2 + -^f) 7329-30

The only remaining difficulty is that, as we do not know the actual values 
of and £2, we cannot calculate e? and e£. However, as £ is small, no serious 
errors will be committed hy calculating e? and e£ corresponding to £t = 0 and 
£2 = 0 (compare Graphs 6, 16 and 18). When this has been done, and Ks and K2 

have been found as described above, we use, successively, the equations 7323-24, 
7329 and 7330. It should be noted that a negative M must be inserted in 7329.

K1Aey
- 2M 2K, + KKl(Aex - 1)

Example 73d

As an example we shall apply the described approximate method to the smooth wall dealt 
with in the first part of Example 73b. We assume here:
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h0 = 2 Y = 1 <p = 30° 6 = 0 c = p=pw = 0 Q = 0

We get then from Graph 16. corresponding to = £2 = 0:

X? = | X{ = 6. 8 X, = 3 Xy = 0.16

As hi = 2 + h2. we can now find h2- Ah from the following equation, which expresses that 
the transversal force should be zero:

i(h2- Ah)2 x 3 - i(2 + h2- Ah)2* 4 = ?(h2- Ah)2- f(h2- Ah) - 1 = 0 h2- Ah = 1 hi- Ah = 3

The corresponding moment is:

M - lx i«x 3 - lx 3=>x *- - 1.00 

Further, we get for the different unit pressures:

el = 3 x $ = 1.00 e2 = 1 x 3 = 3.00 Aex = 2.00

e{ = 3 * 6.8 = 20.40 e£ = 1 x 0.16 = 0. 16 Aey = 20.24

For a smooth wall and <p = 30° we have =0.4 and K2 = 1.6, with which we find from 
7329-30:

0. 4 x 20, 24
2 x 1.00 2 x 1.6 + 0.4 ( 20.24

2.00 27.6 x = 0.190

Ah = 0.190 (1.6 + 0.4 20.24
2.00•) = 1.07 hi = 4.07 h2 = 2.07 4.07 

-!!&. ‘ 2.07 1.97

As the calculation in Example 73b has given ms = 2.00, it will be seen that the approxi
mate method is on the safe side and actually rather accurate.

If a similar calculation is made for the rough wall considered in the latter part of 
Example 73b, we find mr = 2.47 hy means of the approximate method, whereas the correct value 
is 2.57.

74. ANCHORED SHEET WALLS

741. Design With No Yield Hinge

Fig. 74A shows an anchored sheet wall. The wall is assumed vertical and the 
ground surfaces horizontal, at least on the active side. On this side a surcharge 
Pi may occur. The wall is also assumed to be partly submerged, and may be acted 
upon by a differential water pressure pw. Further, the wall has a weight Gw and 
may be loaded hy a vertical force L at its top. Its foot is supported by a ver
tical point resistance S.

As explained in Section 36, the wall may be designed for any chosen state 
of failure which is kinematically possible. However, the smallest possible 
driving depth is obtained when we assume that, in the state of failure, the wall 
rotates about the anchor point. This will usually lead to the most economical de
sign, when the wall is driven into soft clay or into a slope. In the considered 
state of failure we have x = q and:
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Si * q : ht S2 = q : h2 7401-02

On the active side the rotation is 
positive, and the corresponding rupture- 
figure must be of the type A. On the pas
sive side, the rotation is negative, and the 
corresponding rupture-figure is assumed to 
be of the type A (smooth wall) or AfPfA 
(rough wall).

The heights h0, h5 and ht-q are given, 
whereas the driving depth h2, the horizon
tal component A of the anchor pull and the 
moments in the wall shall be determined hy 
the calculation.

For the forces acting on the wall 
proper we get hy vertical projection, by 
horizontal projection and by taking the 
moments about the anchor point:

S = L + Gw - F, - F2 + A tan g 7403
Fig.74A: Anchored sheet wall

with no yield hinge A = E* - E2 + P^hg 7404

q(E4 - E2) - EtZi + E2z2 + PwhgCq - |hg) = 0 7405

Equation 7403 is not of primary importance to the main problem, but it can 
be used to investigate whether the wall (considered as a row of point-bearing 
piles) can carry the vertical forces acting upon it.

In the case of homogeneous earth we have, for E and Ez, the general expres
sions 6118-19. Wien the earth is partly submerged or stratified, corresponding 
analytical equations can be made. They become rather involved, however, and it 
is therefore usually simpler to construct the pressure diagrams according to the 
principles indicated in Sections 62-63.

The calculation proceeds now in the following way. We estimate a value of 
h2 and calculate the corresponding values of lu, h6 and q. 7401-02 give then 
and S2, for which we can find the earth pressure constants by means of the graphs 
in the Appendix. After this, the pressure diagrams are constructed, El E^l E2 

and E2z2 are calculated, and it is investigated whether 740 5 is satisfied. If 
not, we must change h2 and repeat the calculation until satisfactoiy agreement 
is obtained. 7404 gives then the horizontal anchor pull A.

The greatest positive moment M2 occurs at the point where the transversal 
force in the wall is zero. The height h4 of this point (above the foot of the 
wall), as well as the corresponding moment, is determined hy the aid of the 
pressure diagrams. The same applies to the greatest negative moment NU which, 
of course, occurs at the anchor point.

Pos. Rot.Neg. Rot.
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It should be noted that,when we have applied adequate safety factors to c 
and tan qp, the driving depth found by the calculation is fully sufficient as re
gards the stability of the wall. It may, however, be necessary to increase the 
calculated driving depth, if extra safety against scour is required, or if it 
proves necessary to increase the bearing capacity of the wall, considered as a 
row of piles. However, in such cases a more economical design can usually be ob
tained by using the method in Section 742 or Section 743.

Example 74a

Neg. Rot. Pos.Rot.

As an example, we shall consider the 
following case of a smooth sheet wall in 
soft clay (Fig. 74B):

h0 - 7 m hi- q = 2 m hg = 2. 5 m

y5 *= 1.7 t/m3 y6 = Y2 = 0.7 t/m3

Pi » 2.75 t/m3 P„ = 0 <p = 6 = 0

c = 3 : 1.5 = 2 t/m2 a = o

where we have applied a safety factor 1.5 
to the actual cohesion.

After some trial we find that we 
must assume:

hs = 2.9 m hi = 7 + 2.9 “ 9.9 m

q = 9.9 - 2 = 7.9 m

£i=M = 0-8°

h6 = 7.4 m

£ =M = 27 2.9 2'7

For these values of £ we find from 
Graphs 5 and 6:

W° * 0.67 kJ » 2 Ki = - 3.35
Fig.74B: Anchored sheet wall in soft clay

4 = 0.87 K* = - 2 y?2 = 2. 55

The heights y in the approximate pressure diagrams are :

yt = 0.67 X 9.9 = 6. 63 m y2 = 0.87 x 2.9 = 2. 52 m

and the pressures are determined hy the general formula 6308, from which we find the following 
results for the active side (pos. rot. ):

At level +2. 5 m: 
At level 0. 0 m: 
Above level -0.77 m: 
Below level -0.77 m: 
At level -7.4 m:

2.75 + 2 x 2
6.75 + 1.7 x 2.5 

11. 00 + 0.7 x 0.77 
11.54 - (3.35 + 2)
0.84 + 0.7 x 6.63

- 6.75 t/m2 
= 11.00 t/m2 
= 11. 54 t/m2 

x 2 = 0.84 t/m2 
= 5.48 t/m2

For the passive side (neg. rot.) we get, disregarding negative pressures:
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At level -4.88 m: 0.7 x 0.38 + 2.55 « 2 = 5.37 t/m2
At level -7.4 m: 5 . 37 + 0.7 * 2.52 » 7. 13 t/m2

Hie pressure diagrams are shown to scale in Fig. 74B. With the aid of these we can now 
calculate:

E, = i x 2.5 x 6.75 + | x 2. 5 * 11.00 + ? x 0.77 * 11.00 + i x 0.77 x 11.54 + i * 6.63 x 0. 84
+ i x 6. 63 x 5.48 = 8.43 + 13.75 + 4. 24 + 4.44 + 2. 79 + 18.20 = 51.9 t/m

E!Zi = 8. 43 x 9.07 + 13.75 x 8.23 + 4.24 x 7.14

+ 4.44 x 6.88 + 2.79 x 4.42 + 18. 20 x 2.21 = 303 tm/m

E2 = k x 2.52 x 5.37 + i x 2.52 x 7. 13 = 6.77 + 8. 99 = 15.8 t/m 

E2Z2 = 6.77 X 1. 68 + 8.99 x 0.84 = 19.0 tm/m 

We can then show that 7405 is satisfied:

7.9(51.9 - 15.8) - 303 + 19.0 = 0

The horizontal component of the anchor pull is now determined by 7404:

_A = 51.9 - 15. 8 = 36.1 t/m

The transversal force is zero at a height h4, which may be determined hy the equation: 

e4u - !y61u - Es = 5. 48 h4 - I x 0. 7 hj - 15.8 = 0 h, = 3.8« h3 = 6.1 m

Hie corresponding maximum moment is:

Mg * ie*tu - ?y6h| - EsZ2 = i X 5.48 X 3.82 . i X 0.7 X 3.8= . 19.0 = 7.9 tm/m

whereas the minimum moment (at anchor level) is:

i x 6. 75 x 22 - I x 1.7 x 23 = -15.8 tm/m

If the sheet wall, as well as the anchors, are made of steel 37 with a yield stress of
about 2400 kg/cm2, the "allowable” stress is 2400 : 1.2 = 2000 kg/cm2. Consequently, the ne
cessary anchor section (T), and the necessary section modulus (W) of the wall, will be:

T = 36100 : 2000 ' 18,05 cm2/m W «= 1580000 : 2000 = 790 cm3/m

Example 74b

As a more complicated example, we shall consider the following case concerning a smooth 
sheet wall in stratified earth (Fig. 740. Moreover, this case shows the way to deal with vari
able cohesions and friction angles other than 30°.

Hie upper layer is sand fill with an actual friction angle of 30°. Applying a safety fac 
tor 1.25 to |i, we find that the calculation should be made with <p = 25°.

The lower layer is a boulder clay with an actual cohesion (undrained shear strength) of 
0. 21 d + 2.55 (t/m2), »here d is the depth (m) below the natural surface of the clay layer. Ap
plying a safety factor of 1.5, we find that the calculation should be made with c = 0. 14 d + 1. 
The given quantities are then:
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+ o.o

Sand

■rrrry. tysjt-ys/wswsA'ysw

Pos. Rot.Neg. Rot.
Fig.74C: Anchored sheet wall in strati fied earth

ho® 9.5m q - hi * 0. 7 m

h7 = 7. 5 m Pi = Pw = 0 

Y, = 1.0 t/m3 <p7 » 25° c7 = 0 

Ys * Ya “ 1. 2 t/m3 <P9 = <P2 * 0

Ce * c2 = 0. 14 d + 1.7 t/m2

After some trial we find that 
we must assume:

h2 = 4.1 m hi = 9. 5 + 4. 1 = 13. 6 m

13.6 + 0.7 * 14. 3 m h8 = 6. 1 m

£‘"fl=1-05 £2 = ^=3.5

For these values of & we find
from Graphs 5. 6. 11, 15 and 16 for 

<J> = 0° and q> = 30° re^ectively:

U? - 0.90 X2 = 2.40

We =0.71 Kg = - 3. 20

Xao = 0.35 ^30 = 3 Xao = 0. 26

By means of Graph 19 and equation 59 04, we get now for <p - 25°:

X7 - 0.42 X7 = 2. 45 X7 = 0. 33 U7 = 1 ~ - 0.'33 * 0'795

As both Ug and u7 correspond to a pressure jump within h7, w7 is valid (Section 634), 
and we get:

yt = 0.795 x 13.6 = 10.8 m y2 = 0.90 x 4. i = 3. 7 m

By means of 6308-09, we can now calculate the unit pressures on the active side:

Above level - 2.8 m: 
Below level - 2.8 m: 
Above level - 7. 5 m: 
Below level - 7.5 m: 
At level - 13. 6 m:

2.45 x i.o x 2.8 = 6.87 t/m2
0. 33 X 1.0 X 2.8 = 0.93 t/m2
0.33 x l.o x 7.5 = 2.47 t/m2
1.0 x 7.5 - 3.20 x 1.7 = 2.06 t/m2
2. 06 + 1. 2 x 6.1 - 3. 20 x 0.14 x 6.1 6.66 t/m2

and on the passive side, disregarding negative pressures:

At level 
At level

-9.9 m: 1. 2 x o. 4 + 2. 40 (0. 14 x 2. 4 + 1. 7) = 5. 38 t/m2 
-13.6 m: 1. 2 x 4. 1 + 2. 40 (0.14 x 6. 1 + 1.7) = 11.04 t/m2

The pressure diagrams are shown to scale in Fig.74C. With the aid of these we can now 
calculate:

Ej = | x 7.5 x 2. 47 + ^ x 2.8 (6.87 - 0.93) + $ x 6.1 x 2.06 + | x 6. 1 x 6. 66 =
9 . 25 + 8. 31 + 6. 28 + 20. 35 = 44. 2 t/m

EjZj = 9. 25 x 8. 6 + 8. 31 x n. 73 4 6. 28 x 4. 07 + 20. 35 x 2.03 = 245 tm/m
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E2 = \ x 3.7 x 5. 38 + | x 3.7 x n.04 = 9.95 + 20.45 * 30.4 t/m 

E2z2 = 9.95 x 2.47 + 20. 45 x 1.23 * 50 Wm 

We can then show that 7405 is satisfied:

14.3 ( 44.2 - 30.4) - 245 + 50 = 0

The horizontal component of the anchor pull is now determined by 7404:

_A = 44. 2 - 30. 4 = 13.8 t/m

The depth h3, at «hich the transversal force is zero, may be determined hy the equation:

i * 1.0 x h§ x 0.33 + i x 2.8 (6.87 - 0.93) - 13. 8 = 0 h3 = 5.75 m h4 = 7.85 m

The corresponding maximum moment is:

M2 = 13.8 x 6. 45 - ^ x L0 x 5.75s x 0.33 - 8. 31 x 3. 88 = 46 tm/m

Por anchors of steel 52 and a sheet wall of steel 55-60, the “ allowable” stress is about 
3300 : 1. 2 “ 2750 kg/cm2. Consequently, we find the necessary anchor section and wall section 
modulus at:

T = 13800 : 2750 = 5.0 cm2/m W = 4600000 : 2750 = 1670 cm7m

742. Design with One Yield Hinge

The design method described in Section 741 will yield the smallest possible 
driving depth, and will also give moderate moments in the wall, but the necessary 
anchor pull will usually be rather high.

A considerably smaller anchor pull can be obtained, at the expense of a 
somewhat increased driving depth, by designing the wall on the assumption that a 
yield hinge develops in the state of failure. This method will usually give the 
most economical design, when the wall is driven into sand or firm clay with a 
horizontal surface.

The yield hinge is assumed to develop at a point which divides the height 
h2 in two parts, h3 and h4 (Fig.74D). Otherwise, the exterior conditions are the 
same as in Fig.74A.

In the state of failure the upper part of the wall rotates about the anchor 
point, whereas the lower part is assumed to undertake a translation. When the de
sign is made on this basis, it can be shown that no other movement is possible.

If the lower part should show a tendency to rotate about some point below 
itself, this will not affect the active pressure materially, but it will at once 
decrease the passive pressure and raise its pressure centre (compare the calcula
tion of rupture XfP for a smooth wall in Section 56). This will reduce the moment 
in the yield hinge, stopping the yield here until the assumed translation takes 
place again.

If the lower part should show a tendency to rotate about some point above 
itself, this will raise the resultant of the active pressure and lower the re
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sultant of the passive pressure. This will tend to increase the moment in the 
yield hinge, causing an increased yield here until the assumed translation takes
place again.

Pos. Rot.

A sec g

9.7SZS

Transl.Transl.

We have, consequently, for the upper 
and the lower part of the wall respective
ly:
&3 - 1 - £4 = £2 • oo 7406-07h3

On the passive side of the wall we 
have a rupture S (smooth wall) or SfP 
(rough wall). On the active side, the rup
ture must be of the type RsA (smooth wall) 
or PsA (rough wall). The latter ruptures, 
which are shown in Fig.35D, can be calcu
lated as described in Section 463. However, 
we shall here use the approximation indi
cated in Section 474, according to which 
the pressures on the upper part of the 
wall are the same as for an active rup
ture A (a = a3). whereas for the lower 
part they increase linearly from e3 (at 
the yield hinge) to a value e4 (at the 
foot of the wall) which corresponds to an 
active rupture Z (£ = £4 = « ).

Fig.74D: Anchored sheet wail If the earth is stratified, with an
with one yield hinge internal boundary within h4, two straight

pressure lines are determined for h4, one 
corresponding to the constants of the upper layer, and the other to those of the 
lower layer. In each layer the respective part of the corresponding pressure line 
is then used.

As the transversal force in the yield hinge is zero, the conditions of 
equilibrium for the two parts of the wall give, provided that h4 < h6 (or pw= 0):

E2 - E4 - p^h4 = 0 M2 = E4z4 - E2z2 + jp^^ 7408-09

A - E3 + pw(h6-h4) M2 = E3(q-h4) - E3z3 + 2p^(hg-h4)(2q-hg-h4) 7410-11

Whereas E3 and E3z3 are best determined by means of the pressure diagram, 
because general analytical expressions become too involved, we find for E2, E2z2,
E4 and E4z4:

e2 = 2y2X2h2 + c2K2h2 E2z2 - £y2X2h2 + ^CqY. 2^2 7412-13

e4 - |h4(e3 + e4) E4z4 = |h?(2e3 + e4) 7414-15

where: e3 = [y5h5 + y6(h3-h5)]\^ + Pip? + C6ic? 7416

and: e4 = (y5h5 + Y6h6)X? + PiP? + cgK y
■ 4 7417
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As hg = h3+h4-h5 and h2 = h3+h4-h0 we find, by insertion of 7416-17 in 
7414, and of this as well as 7412 in 7408, the following equation in h4:

0 - h4(y2\2 - y6\4) + (h0-h3) ^ Y2^-2(^o“h3) - 2c2K2^j 

- h4[2Y2Mh0-h3) - 2c2k2 + Y5h5X^ + Y6(h3-h5)X^ + PiP^ + c6^ + e3 + 2pwJ 7418

The calculation proceeds now in the following way. We estimate a value of 
h3 and find the corresponding g3 from 7406. As we know also S4 = fi2 = æ , the 
graphs in the Appendix will supply all the constants necessary for determining 
the oomplete pressure diagrams corresponding to any driving depth.

Next, we find e3 from 7416 and can now, by means of 7418, calculate the 
value of h4 which corresponds to the estimated h3. When this has been done, we 
determine all the earth pressures and investigate then whether 7409 and 7411 
yield the same positive moment M2. If the difference is small, the average value 
can be used, but if it is considerable, h3 must be altered and the whole calcu
lation repeated until the agreement is satisfactory.

When this has been obtained we can, finally, calculate the anchor pull A 
by means of 7410 and the greatest negative moment Mi (at anchor level) by means 
of the pressure diagram.

Example 74c

Pos. Rot.

10.os

+ * o.s

1.79* OS

v/y ly’//::y/yy/AySA' r//'y/rs/yyyÆ

Tran si. Trans/.

Fig.74E: Anchored sheet wall in sand

As an example we shall consider 
the following case of a rough sheet wall 
in coarse sand with an actual friction 
angle of 36°. Applying a safety factor of 
1.25 to u we find that the calculation 
should be made with q> = 30°. In addition 
to the active earth pressure a differenti
al water pressure shall be taken into ac
count. The given quantities are (see Fig. 
74E):

h0 - 8 n hi- 1.5 i hs = 2 m

Y5 = 1.8 t/m3 y6 * Y2 * 1.0 t/m3

Pi = 1 t/m2 pw = 0. 5 t/m2 q> = 30°

After some preliminary calcula
tions we find that we must assume:

h3 = 6. 15 m £a = 1 - 1.5 : 6.15 = 0.75

For S3 = 0.75 and S4 - - « we
get from Graphs 11 and 15-18 in the Ap
pendix:

\2 = 5. 16 (i)3 = 0. 87

1.88 Pa = 0.16 p4 = 0.273

5.66 >* u'
-S II O to \yt = 0.266
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We will now first calculate e3 from 7416:

e3 = (1.8 x 2 + 1.0 x 4.15)X 0.21 ♦ 1X0.16= 1.79 t/m2

and we find then by means of 7418:

hj (1.0 x 5. 16 - 1.0 x 0.266) + 1.85 X 1.0 X 5.16 * 1.85 
- h4 ( 2 x 1.0 x 5.16 x 1.85 + 1.8 x 2 x 0.266 + 1.0 x 4. is x 0.266 + 1 x 0.273 + 1.79 + 2 x 0.5) 

= 4. 89 hj - 24. 2 h4 + 17. 7 = 0 h4 = 4. 05 m

The remaining heights can now be calculated:

ht - 6.15 + 4.05 = 10. 2 m hg = 10.2 - 8 = 2. 2 m hg = 10. 2 - 2 = 8. 2 m

q = 10.2 - 1.5 = 8.7 m y3 = 0. 87 x 6.15 = 5. 35 m

Next, we find the following unit earth pressures on the active side:

At level + 2.5 m: 1.88 X 1 = 1.88 t/m2
Above level + 1.7 m: 1.88 + 5.66 x 1.8 x 0.8 = 10.05 t/m2
Below level + 1.7 m: 0.16 x 1 + 0.21 x 1.8 x 0 .8 = 0.46 t/m2
At level + 0.5 m: 0.46 + 0.21 x 1.8 x 1.2 = 0.92 t/m2
At level - 3.65 m: 0.92 + 0.21X1,0X4.15 = 1.79 t/m2
At level - 7.7 m: 0.273 x 1 + 0.266 (1.8 x 2+1.0*8.2) *

and on the passive side:

At level - 7.7 m: 5.16 x l.o x 2.2 = 11.35 t/m2

The pressure diagrams (including the differential water pressures) are shown to scale 
in Fig.74E. With their aid we can calculate:

Eg = f x 2.2 X 11.35 = 12.5 t/m EsZg = 12. 5 x 0.73 = 9.2 tm/m

E3 =| x 0.8 x 1.88 + {xo.8x 10.05 + i x 1.2 x 0.46 + i x 1.2 x 0.92 + | x 4.15 x 0.92 

+ i x 4.15 x 1.79 = 0.75 + 4.02 + 0.28 + 0.55 + 1.91 + 3.72 = 11.2 t/m

E3z3 = 0.75 x 5.88 + 

+ 0.55 x 4.55

E4 = * x 4.05 x 1.79

E4z4 = 3.62 x

4.02 x 5.62 + 0.28 x 4.95 

+ 1.91 x 2.77 + 3.72 x 1.38 = 41.3 tm/m

+ -J- x 4. 05 x 3. 41 = 3. 62 + 6. 90 = 10. 5 t/m

2.70 + 6.90 x 1.35 = 19.1 tm/m

We can now find the maximum moment Mg from 7409 and 7411:

Mg = 19.1 - 9. 2 + g x 0. 5 x 4.052 = 14.0 tm/m

Mg = 11.2 (8.7 - 4.05) - 41.3 + £ x 0. 5 x 4.15 (2 x 8.7 - 8.2 - 4.05) = 16.0 tm/m

The agreement is sufficiently good, and the design should be based on the average value 
Mg = 15.0 tm/m. The horizontal anchor pull is given by 7410:

A = 11.2 + 0.5 X 4.15 = 13.3 t/m
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The minimum moment (at anchor level) Is found hy means of the pressure diagram:

Mi = - 0.75 x 1. 23 - 4. 02 x 0.97 - i x 0.46 x 0. 72 - 1 x 0. 21 x 1.8 x 0. 73 = - 5.0 tm/m --- 6

With anchors and sheet wall of steel 37 the “allowable* stress is 2000 kg/cm2, so that 
we find:

_T ' 13300 : 2000 = 6.65 cm2/m W_ = 1500000 : 2000 = 750 cm3/m

The corresponding anchor slab has been designed in Example 72b (see Fig.72C).

In the following table, the results found by the author1 s methods are compared with re
sults obtained by some empirical design methods. The driving depths, the anchor sections and the 
wall section moduli are comparable direct, but not the anchor pulls and wall moments as the 
safety factors are introduced in different ways.

Design Driving Anchor Anchor Anchor Max. Wall Wall
according Depth Pull Stress Section Moment Stress Modulus
to: m t/m kg/cm2 cm2/m tm/m kg/cm2 cm3/m
Section 741 2. 1 18. 1 2000 9.05 12.7 2000 635
Section 742 2.2 13.3 2000 6.65 15.0 2000 750
Section 743 4.1 11.0 2000 5.5 10.6 2000 530
Danish Rules 2r* l.g 8.a 1300 6.2 l&rb 4.0 1600 655 51:
Tschebotarioff 3.5 8.5 1400 6. 1 13.2 1870 705
Rowe 3.3 7.8 1260 6. 2 8.9 1260 700
77 i"-i 3.2. S.2 IVvo 6,1 jy.s- 11,00 ‘loo

With Increasing driving depth (and unyielding anchors) the possible state 
of failure changes as indicated in Pig.36M. At the extreme left is shown the 
state, on which the calculations in Section 741 are based, and at the centre left 
the state assumed in the present Section 742.

Pos. Rot.

Pos. Rot. Neg. Rot.

Fig.74F: Anchored sheet wall 

partly fixed in ground

When the driving depth is made 
somewhat greater than necessary accord
ing to the calculation in Section 742, a 
certain reduction of the moments and the 
anchor pull can be obtained by making a 
new calculation, based on the state of 
failure shown in the centre of Pig. 36M. 
The corresponding rupture-figures are, on 
the passive side,of the type AaR (smooth 
wall) or AaP (rough wall), and on the 
active side, of the type AaRsA (smooth 
wall) or AaPsA (rough wall). The latter 
rupture is shown in Fig.35P. We have then 
(see Fig.74F):

If x is known, the pressures on 
the passive side can easily be determin
ed, corresponding to £2 and positive ro
tation. On the upper part h3 of the ac
tive side, the pressures correspond to
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£s and positive rotation, and at the foot of the wall we can calculate ej and 
ej approximately, corresponding to £* and negative rotation. Between e3 and ej a 
linear variation is assumed, and we have y4 = u^hi. Apart from the earth pressures 
a differential water pressure pw may occur (not shown in Pig. 74P).

The given quantities are here hi, h2 and q, whereas we shall determine x, 
h4, M2 and A by means of 7408-11.

The calculation may now proceed in the following way. First, we estimate 
£3 and draw a line corresponding to e?. Next, we estimate x, calculate £4 and £s 
and draw the diagram for the passive side as well as the part corresponding to 
e^. h4 is now fixed in such a way that 7408 is satisfied, and £a is checked and 
the necessary adjustments made. Next, the remaining part of the active pressure 
diagram is drawn, and it is investigated whether 7409 and 7411 give the same M2. 
If not, x must be changed and the calculation repeated. Finally, 7410 gives A.

This calculation is made on the correct basis as long as the negative mo
ments in the buried part of the wall prove to be numerically smaller than M2. 
Otherwise, the method indicated in Section 743 must be used.

743. Design with Two Yield Hinges

Pos. Rot.

Pos. Rot. Neg. Rot.

Fig.74G: Anchored sheet wall 
wi th two yield hinges

When the driving depth is suf
ficiently great, a second yield hinge 
will develop, viz. in the buried part 
of the wall, at the point where the 
transversal force is zero. If the 
driving depth is just sufficient to 
produce a negative yield moment M3, 
numerically equal to the positive 
yield moment Ms, the state of failure 
will be as shown in Pig.36M, centre 
right. If the driving depth is still 
greater, the state shown at the ex
treme right will occur. The following 
calculation method is valid for both 
these cases.

In the first part of the calcu
lation, we consider only the pressures 
acting above the level of the lower 
yield hinge (see Pig.74G). These pres
sures correspond approximately to :

£3=1- -^7-^- £* - £2 - 0 7422-23
II3

Between the active pressures e3 and e4 a linear variation is assumed. Apart 
from the earth pressures a differential water pressure pw may occur (not shown in 
Pig. 74G).

51
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Of the 4 equations of equilibrium for the parts h3 and h*, the 3 are iden
tical with 7408 and 7410-11, but 7409 must be substituted by:

M2 - Mg ~ E4Z4 — E2Z2 2P^yh4 7424

The calculation proceeds exactly as described in the first part of Section
742, except that the criterion for a correct choice of h3 is that M2 - M3 (from 
7424) should be equal to twice M2 (from 7411).

In the second part of the calculation, we must consider the pressures be
low the level of the lower yield hinge in order to find the necessary increase
Ah of the calculated depth h2. This is most simply done ty means of the approxi
mate method described in Section 735. We can use the formulae 7323-24 and 7329-30 
direct, »hoi ei is substituted by e4, and M by M3.

79. FIXED SHEET IALLS 

751. Design With One Yield Hinge

Fig.75A shows a sheet wall, the top 
of which is fixed in an unyielding super
structure. Apart from this, the exterior 
conditions are the same as for the anchor
ed sheet wall in Fig.74A.

For a fixed sheet wall no state of 
failure is possible, which does not in
volve the formation of at least one yield 
hinge in the wall. If only one yield hinge 
develops, this will generally be located 
at the top of the wall. A design based on 
this state of failure will lead to the 
smallest possible driving depth, and this 
will usually give the most economical de
sign, when the wall is driven into soft 
clay or into a slope.

The moment in the top yield hinge 
can actually be chosen arbitrarily, pro
vided that the wall is designed according
ly, but the most economical design will be 
obtained, when the fixing moment is nume
rically equal to the greatest positive mo
ment.

Fig.75A: Fixed sheet wall 
with one yield hinge

When the safety factor for the positive moments equals or exceeds that for 
the fixing moment, the wall must, in the state of failure, rotate about the top 
yield hinge. When the design is made on this basis, no other state of failure is
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possible, as explained in Section 36. In the considered state of failure we have 
x = q and:

Si = q : tu S2 = q : h2 7501-02

The rupture-figures in the earth will be the same as those mentioned in 
Section 741.

The fixing moment at the top is denoted Mi and is negative. The greatest 
positive moment M2 occurs at the point where the transversal force is zero. The 
heights h0, h5 and q-hj are given, whereas the driving depth h2, the anchor pull 
A and the moments Mt and M2 shall be determined by the calculation.

Considering the wall as a whole, as well as the lower part (h4) separately, 
we get the following conditions of equilibrium:

L + Gw - P, - F2 A Ej - E2 * Pyjyhg 7503-04

-Mi = q(Et - E2) - EiZ! + E2z2 + - ihB) 7505

- E4 - = 0 M2 = E4Z4 - E2Z2 * 2Pyyh4 7506-07

The calculation proceeds now as follows. We estimate a value of h2 and cal
culate the corresponding values of hi, h„ and q. 7501-02 give then 11 and S2, for 
which we can find the earth pressure constants by means of the graphs in the Ap
pendix. After this, we construct the pressure diagrams according to the principles 
indicated in Sections 62-63, and determine the height h4, at which the transvers
al force is zero (7506). Next, we calculate -Mi from 7505 and M2 from 7507. If 
these two moments are not approximately equal, we must change h2 and repeat the 
calculation until satisfactory agreement is obtained. 7504 gives then the anchor 
pull A.

Example 75a

We shall here consider a sheet wall (Fig.75B), the top of which is fixed at the rear of
a relieving platform supported on piles (not shown). The ground surface is horizontal on the
active side, whereas on the passive side, a sloping surface is present, making a negative angle 
i2 with the horizon.

We assume a rotation of the wall about a yield hinge at its top. In this case, where the 
wall proper does not reach the ground surface, the rupture on the active side must be of the 
type AsR (smooth back of superstructure) or AsP (rough back of superstructure), because an act
ive zone-rupture must develop above the wall behind the superstructure. However, as mentioned 
in Section 474, we may simplify the calculation by reckoning with a rupture A as usual and con
sidering the earth above anchor level simply as an additional surcharge.

On the passive side, where the surface slopes, the rupture is probably of the type A
(smooth wall) or AfPfA (rough wall). However, for the sake of simplicity, we shall assume this
rupture to be either of the type P (smooth wall) or SfP (rough wall). For both these ruptures 
general approximate formulae have been indicated in Section 65.

In the example considered the wall is assumed to be rough, and the earth on both sides 
to consist of coarse sand with an actual friction angle of 36°. Applying a safety factor 1.25 
to p we find that the calculation should be made with <p * 30°. The given quantities are then:
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vAy/A-y/w/Ay/Av/stv/Ayic

Sand

- 1.61

A/eg. Rot. Pos. Rot.

Fig.7 SB: Fixed sheet wall 
at rear of relieving platform

ho = 4.5 m 

y5 = 1.7 t/m3 

P = 1 t/m2

j " 0

a - ht = o 

Ye !
P» = 0 c 

ii = 0

h5 = 1.5 m 

Y-2 * 1.0 t/m3 

0 cp = 30°

is = - 20°

The effective * surcharge” at anchor 
level is, including the weight of the earth, 
above this level:

Pi = 1 + 1.7 x 2.0 -4.4 t/m2

Pot the active side we have = 1, 
and find then by means of Graphs 15-18:

X? = 5.66 X? = 0.225
0.895

pl = 1. 60 p{ = 0.17

The pressure constants for the 
passive side have already been calculated 
in Example 65a, where we have found:

K - 2.18 ns = £

After some trial we find that we 
must assume:

hs ~ 2.7 m hl = q * 4.5 + 2.7 = 7. 2 m h6 = 7. 2 - 1.5 = 5.7 m y4 = 0.895 x 7.2 = 6.45 m

We can 
the constants

now calculate the unit pressures on the active side, using for the upper 2.0 a 
indicated in the table in Section 523 for <p - 30° and a rough wall:

At level + 3.5 m: 0.273 >< 1 = 0.27 t/m2
Above level + 1.5 m: 0.27 + 0. 266 x 1.7 x 2.0 » 1.17 t/m2
Below level + 1.5 m: 1.60 X 4.4 = 7.03 t/m2
Above level + 0.75 m: 7.03 + 5.66 >< 1.7 X 0.75 = 14.25 t/m2
Below level + 0.75 m: 0. 17 X 4.4 + 0.225 x 1.7 x 0.75 = 1.04 t/m2
At level 0.0 m: 1.04 + 0.225 x 1.7 x 0.75 = 1.33 t/m2
At level - 5.7 ra: 1.33 + 0.225 x 1.0 x 5.7 = 2.61 t/m2

passive side we find:

At level - 5.7 m: 2. 18 X 1.0 x 2.7 =5. 88 t/m2

The pressure diagrams are shown to scale in Fig. 75B. With the aid of these we can now 
calculate:

El = s x 0.75 x 7.03 + | X 0.75 * 14. 25 + £ x 0.75 x 1.04 + | x 0.75 x 1.33 + k x 5. 7 x 1. 33 

+ T X 5.7 X 2.61 = 2.64 + 5. 34 + 0.39 + 0. 50 + 3.80 + 7.43 = 20.1 t/m

EiZi = 2.64 x 6.95 + 5. 34 x 6. 70 + 0. 39 x 6.20
+ 0.50 x 5.95 + 3.80 x 3.80 + 7. 43 x 1.90 = 88.0 tm/m

Es -'s x 2. 7 x 5. 88 = 8. 0 t/m E2Zs = 8.0 x 0.9 =7.2 tm/m
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The height h4, at which the transversal force is zero, is determined by 7506: 

eih« - i Y^ilU - E2 = 2.61 h4 - I x i.o x 0.225 h* - 8.0 = 0 h« = 3.6 m h3 = 3.6 i 

Hie moments Mt and M2 can now be found from 7505 and 7507:

- Mi = 7.2 (20.1 - 8.0) - 88.0 + 7.2 = 6.4 tm/m 

M2 = \ x 2.61 x 3.62 - £ * 1.0 x 0.225 * 3.63 - 7. 2 = 6.2 tm/m 

As the agreement is fully satisfactory, we can finally calculate the anchor pull from
7504:

A » 20. 1 - 8.0 = 12. 1 t/m

If the sheet wall is to be made of reinforced concrete, it can be designed for the 
average moment 6.3 tm/m with "allowable” stresses as those indicated in Example 72a.

The anchor force and the fixing moment are transferred to the relieving platform. If this 
structure is designed in the conventional way with ordinary allowable stresses, the anchor force 
and the fixing moment calculated above must first be divided by about 1.3. as they already in
volve a safety factor of approximately this magnitude.

752. Design With Two Yield Hinges

Pcs Rot.

Vi V77ZS USWAV/tW*

Transl.

Fig.75C: Fixed sheet wall 
wi th two yield hinges

will be the same as those mentioned in 
tion is also, in principle, the same.

The design method described in Sec
tion 751 will yield the smallest possible 
driving depth, and also moderate moments, 
but a rather high anchor pull. A consider
able reduction of the anchor pull can, 
however, be obtained by designing the wall 
on the assumption that two yield hinges 
develop in the wall. This method will 
usually give the most economical design, 
when the wall is driven into sand or firm 
clay with a horizontal surface.

Provided that the wall has a con
stant section modulus, the two yield mo
ments Mi and M2 must be numerically equal. 
In the state of failure the upper part of 
the wall must rotate about the top yield 
hinge, whereas the lower part will under
take a translation as explained in Section 
742. We have, consequently (see Pig, 75C):

- 1 + ^ £«. « £2 - co 7508-09
ha

The rupture-figures in the earth 
Section 742. The earth pressure distribu-

9999995
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Hie conditions of equilibrium for the two separate parts of the wall give, 
provided that h* < hg (or pw= 0):

E2 - E4 - Pwh4 = 0 M2 * E.z* - EjZ2 + |Pwhi 7510-11

A - E3 + Pw(hfi-h4) M2- Mi E E3 (q-h4) - E3z3 + 2p^(hg-h4) (2q-hg-h4) 7512-13

E3 and E3z3 are determined by means of the pressure diagram, whereas E2, 
E2z2, E4 and E4z4 can be found from 7412-17.

The calculation proceeds now as follows. We estimate a value of h3 and find 
the corresponding £a from 7508. Using also 7509 we can find all the necessary 
earth pressure constants from the graphs in the Appendix. Next, we calculate e3 

from 7416 and determine h4 by means of 7418. When this has been done we determine 
all the earth pressures and investigate then whether M2 - Mi (from 7513) is equal 
to twice M2 (from 7511). If the difference is small, the average value can be 
used, but if it is considerable, h3 must be altered and the whole calculation re
peated. Finally, 7512 gives the anchor pull A.

Example 75b

Pos. Rot.0 0,,
ZOO

Soft
Clay

Trans/.

Fig.75D: Fixed sheet wall in strati tied clay

As an example we shall consider 
a smooth sheet wall in stratified clay 
(Fig.75D). The upper layer, which has a 
thickness of 11 m, consists of soft clay, 
whereas the lower layer is a considerab
ly firmer clay. For the sake of simplici
ty we assume the soft clay to exist over 
the entire height hi on the active side; 
this is, of course, on the safe side.
The given quantities are:

ho = 11 in q - hi = 0 h5 = 0

Yi = 0.6 t/m3 Ci = 1.5 : 1.5 ■ 1 t/m2

Ya = 1.0 t/m3 c2 = 6.0 : 1.5 = 4 t/m2

oIIa p. = 0 q> = 0

where we have divided the actual cohe
sions by a safety factor 1.5.

Independently of the driving depth 
we have in this case S3 = 1 and S4 - £a 
* <o. We find then from Graphs 1, 2, 5 
and 6:
uS = 0.705 k3 = 2 X3 = - 3. 22

K2 = 2 Ca = i K^ = -2

After some preliminary calculations we find that we must assume h3 ~ 8.5 m. 7416 yields 
then, as h5 = 0 and hg = hi:

e3 = 0. 6 * 8.5 - 1 x 3. 22 “ 1. 88 t/m
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The corresponding value of h4 is determined by 7418:

h4 (1.0 x 1 - 0.6 x 1) + 2.5 (1.0 x i x 2.5 - 2 * 4 * 2)
- h4 (2 x 1.0 x i x 2.5 - 2 x 4 x 2 + 0.6 x 8.5 x 1 - i x 2 + 1.88) =

0.40 hj + 6.02 h4 - 33.7 = 0 h4 = 4.35 m

The remaining heights can now be calculated:

hi = Q = 8.5 + 4.35 = 12.85 m hs = 12.85 - 11 = 1.85 m y3 = 0.705 x 8.5 = 6.00 m

The depth d°, at which the active pressure will be zero, is determined by the equation:

Yid° + cSa = 0.6 d° - 1 x 3.22 = 0 d° = 5.37 m

We can now calculate the unit pressures on the active side, disregarding negative press
ures:

At level 0.0 m:
Above level - 2.5 m:
At level - 5.37 m:
At level - 8.5 m:
At level -12.85 m:

1 x 2 = 2.00 t/m2
2.00 + 0.6 x 2.5 = 3.50 t/m2
0.6 x 5. 37 - 1 * 3.22 = 0 t/m2
0.6 * 3.13 = 1.88 t/m2
0. 6 * 12.85 - 1 * 2 = 5.71 t/m2

On the passive side we get:

At level -11.0 m: 4*2 = 8.00 t/m2
At level -12.85 m: 8.00 + 1.0 x 1.85 = 9.85 t/m2

The pressure diagrams are shown to scale in Fig.75D. Disregarding the negative pressures 
we find:

Ej = £ * 1.85 * 8.00 + i * 1.85 * 9.85 = 7.40 + 9. 11 = 16.5 t/m

EsZa = 7.40 * 1.23 + 9. 11 * 0.62 = 14.7 tm/m

E3 = £ * 2. 5 * 2.00 +| * 2.5 * 3.50 + T x 3. 13 * 1.88 = 2.50 + 4. 37 + 2.94 = 9.8 t/m 

Eaza = 2.50 X 7 . 67 + 4. 37 X 6.83 + 2. 94 * 1.04 = 52. 1 tm/m

E< = i * 4.35 x i.88 + |x 4.35 x 5.71 = 4.09 + 12.45 = 16.5 t/m

E4z4 = 4.09 * 2.90 + 12.45 * 1.45 = 29.9 tm/m

We can now calculate M2 and M2 - Mi from 7511 and 7513:

Ms = 29.9 - 14.7 = 15.2 tm/m Ms-Mi = 9.8 (12.85 - 4.35) - 52. 1 = 31.2 tm/m -Mi = 16.0 tm/m

The agreement is satisfactory and the design should be based on the average moment 15.6 
tm/m. The anchor pull is finally found from 7512, which gives A = 9.8 t/m.

For a sheet wall and anchors of steel 37. the necessary wall section modulus and anchor 
section are. respectively:

W = 1560000 : 2000 = 780 cm3/m T_= 9800 : 2000 = 4.9 cm2/m

With increasing driving depth (and unyielding anchors) the possible state 
of failure changes as indicated in Fig.36M.
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Wien the driving depth is made somewhat greater than necessary according 
to the calculation in Section 752, a certain reduction of the moments and the 
anchor pull can be obtained by making a new calculation, based on the state of 
failure shown in the centre of Pig. 36M. The corresponding pressure diagrams are 
shown in Pig. 74F.

Such a calculation can be made exactly as described at the end of Section 
742, except that the criterion for a correct solution now is that M2 - (from 
7513) should be equal to twice M2 (from 7511).

753. Design with Three Yield Hinges

Wien the driving depth is sufficiently great, a third yield hinge will de
velop, viz. in the buried part of the wall. The state of failure will then be as 
indicated in Pig.36M, centre right or extreme right. The corresponding pressure 
diagrams are shown in Pig. 74G.

A calculation of this kind can be made exactly as described in Section 743, 
except that the criterion for a correct solution now is that M2 - Ma (from 7424) 
should be equal to M2 - (from 7513). The necessary increase of the calculated 
driving depth is determined as described in Section 735.

Example 75c

We shall here consider a sheet wall (Pig.75E), the top of which is fixed at the front of 
a relieving platform supported on piles (not shown).

We might, as in Example 75a, simplify the problem by assuming behind the platform, a 
horizontal ground surface at anchor level, loaded by a * surcharge" equal to the actual sur
charge plus the weight of the earth above anchor level.

However, we would then still be faced with another problem, viz. that of a non-uniform 
surcharge, which has not been dealt with in the present work. The reason is, that although this 
problem can, in principle, be solved by means of the author” s general method, it does not seem 
possible to indicate a simple, general rule expressing the actual effect of a non-uniform sur
charge on the earth pressure diagram.

The conventional way to deal with this problem is the following. From the lower rear edge 
of the platform two straight lines are drawn, making angles of and 450+ respectively with 
the horizon. Above the point, where the upper line intersects the wall, the * surcharge* (actual 
surcharge + weight of earth) is assumed to have no effect at all. Below the point, where the 
lower line intersects the wall, this "surcharge” is assumed to have full effect. Between the 
two mentioned points a linear pressure variation is assumed.

Until a more accurate solution has been found, the author proposes to adopt, as an appro
ximation, the method described above, but with the modification that he will use, instead of the 
two lines mentioned, a single line making an angle of 45° with the horizon.

The proposed procedure may be summarized as follows. From the lower rear edge of the 
platform a straight line is drawn, making an angle of 45° with the horizon. Above its point of 
intersection (P) with the wall, the usual pressure diagram, corresponding to no surcharge, is 
valid. Below this point a diagram, corresponding to the full "surcharge", is valid (see Fig. 
75E).

Moreover, when we have a yield hinge in the central part of the wall, above point P, we 
shall simplify matters further by using above P. the constants corresponding to £3. and below P, 
the constants corresponding to £*.
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Fig.75E: Fixed sheet wall 
at front of relieving platform

In the example considered, 
the wall is assumed to be rough, and 
the earth on both sides to consist 
of coarse sand with an actual fric
tion angle of 36°. Applying a safe
ty factor 1.25 to ii. we find that 
the calculation should be made with 
<p = 30°. The given quantities are 
then (see Fig.75E):

ho = 13.5 m q - hi = 0 hg = 0

Y5 = 1.8 t/m3 y6 = Y2 = 1.0 t/m3

p - 5 t/m2 pw = c * 0 cp = 30°

The effective * surcharge" 
at anchor level is, including the 
weight of the earth above this 
level:

Pi = 5 + 1.8 x 3.0 = 10.4 t/m2

As the load is considerable, 
and the water depth very great, it 
will be necessary to reduce the mo
ments as much as possible. Conse
quently, we shall calculate the wall 
as fixed in the ground, as well as 
in the superstructure, i.e. we shall 
assume 3 yield hinges to develop.

Independently of the heights, we have in this case S.B ~ 1 and £4 = = 0. We find then
from Graphs

\\ -

15-18:

5.66 X* » 5.66 U3 = 0. 895 Xj = 0.266 pH = 0. 273

\\ - 1.75 m 0. 225 5^ II O -3 X4 = 4.4 pi = 2.4

After some preliminary calculations, we find that we must assume:

hp ° 9.75 m y3 = 0.895 x 9. 75 = 8.75 m

We can then calculate the following active pressures:

Above level - 1.0 m: 
Below level -1.0 m: 
At level - 9.75 m: 
Above level -12.0 m: 
Below level -12.0 m:

1.0 x 1.0 x 5.66 « 5.66 t/m2
1.0 x 1.0 x 0.225 = 0.23 t/m2
1.0 x 9.75 x 0. 225 = 2. 19 t/m2
1.0 x 12.O x 0.225 = 2.70 t/m2
1.0 x 12. 0 x 0.266 + 10. 4 x 0.273 = 6.03 t/m2

The corresponding h4 is found by means of 7510:

\ x 2.25(2.19 + 2.70) + 6.03(h4- 2.25) + | x 1. 0 x 0. 266(h4- 2.25)2 - i x 1.0 x 5. 66 (h4-3. 75)2 

= - 2. 70 h! + 26.7 h4 - 47. 2 = 0 h4 = 7. 6 m

hj = q = 7.6 + 9.75 = 17.35 m ha_ = 17.35 - 13.5 = 3.85 m

At level - 17.35 m we have the following unit pressures:
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ej = 1.0 x 17.35 x 0.266 + 10.4 x 0.273 = 7.46 t/m2

ej = 1.0 x 17.35 x 4.4 + 10.4 x 2.4 =101.4 t/m2

e2 = 1.0 x 3.85 x 5.66 = 21.85 t/m2

e2 = 1.0 x 3.85 x 1.75 = 6.75 t/m2

By means of the pressure diagrams we can now calculate:

E2 = i X 3. 85 X 21.85 = 42. 1 t/m E2z2 = 42.1 x 1.28 = 54.0 tm/m

Eg = ? x 9.75 x 2.19 + ^ x i.o (5.66 - 0.23) = 10.68 + 2.72 = 13.4 t/m

E3za = 10.68 x 3.25 + 2.72 x 9.08 = 59.4 tm/m

E« =! x 2.25 x 2. 19 + I x 2.25 x 2.70 + i x 5. 35 x 6.03 + $ x 5. 35 x 7. 46 = 

2.46 + 3.04 + 16.14 + 19.97 = 41.6 t/m

E4Z4 = 2. 46 x 6.85 + 3.04 x 6. 10 + 16.14 x 3.57 + 19.97 x 1.78 = 128.6 tm/m

The moments are found by means of 7513 and 7424:

M2 - Mt = 13.4 (17.35 - 7.6) - 59.4 = 71.4 tm/m M2 - M9 = 128.6 - 54. 0 = 74.6 tm/m

The agreement is satisfactory, and the sheet wall should be designed for the average 
moment 36.5 tm/m. If it is to be made of reinforced concrete, we can use “ allowable" stresses 
as those indicated in Example 72a.

The anchor pull is found from 7512, which gives A = 13.4 t/m. This force, and also the 
fixing moment M2, is transferred to the relieving platform. If this structure is designed in 
the conventional way with ordinary allowable stresses, the anchor pull and the fixing moment 
must first be divided by about 1.3, as they already involve a safety factor of approximately 
this magnitude.

»e shall, finally, determine the increase Ah of the calculated depth h2, necessary for 
resisting the fixing moment Ms. First, we find from 7323-24 (with e4 instead of e2):

Aey = 101.4 - 6.75 = 94.7 t/m2AeX = 21.85 - 7.46 = 14.4 t/m2

For a rough wall and tp = 30° we get, from the table in Section 735, the constants K2 = 
0.5 and K2 = 1.8, with which we find from 73 29 - 30 (for M = - 36.5 tm/m):

x = 0.49 m

Q4 7Ah = 0.49 (1.8 + 0.5 ^7-7) = 2.5 m ---  14.4 -------

Thus, the actual driving depth should be 3. 85 + 2. 5 = 6,35 m. The complete pressure dia
grams are shown to scale in Fig. 75E.
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76. OTHER EARTH RETAINING STRUCTURES 

761. Braced Walls

We shall consider here the bracing of vertical walls lining the sides of a 
cut. The bottom of the cut, as well as the original ground surface, is assumed 
horizontal. Water pressures, if any, are calculated separately, as usual.

Theoretically, a wall can be kept in place by a single row of struts, even 
if it is not driven into the bottom of the cut. This will be apparent from Graph 
13 for example, but this graph shows also that (for <p = 30° and a rough wall) 
equilibrium is not possible outside the interval 0.10 < n < 0.61. Moreover, as 
the wall must rotate about' the bracing, if it rotates at all, we have in the 
limiting case r\ - £, and Graph 12 shows then that equilibrium is actually only 
possible within the interval 0.12 < t\ < 0.56.

When the wall is driven somewhat into the bottom of the cut, the single 
row of struts can be placed higher than indicated above. In this case the neces
sary driving depth, the thrust in the struts and the moments in the wall can be 
calculated exactly as for an anchored sheet wall (Section 74).

If the cut is to be so deep that more than one row of struts must be used, 
we get a complicated system which can theoretically fail in several different 
ways. However, experience shows that we can always reckon with a certain state of 
failure in the earth behind the wall, due to the method of execution, which is 
as follows:

When the walls have been driven, a shallow cut is made, and the uppermost 
row of struts is put into position. The cut is then deepened sufficiently to 
allow the next row of struts to be placed, and so on, until the cut has attained 
its full depth and all bracings have been placed.

The first row of struts will be in position before any appreciable movement 
of the earth takes place, but, as the excavation proceeds, the exposed part of 
the wall will be pressed a little inwards. As the struts already placed are prac
tically unyielding, the movement of this part of the wall will approximately be 
a rotation about the upper bracing, and this takes place before the next bracing 
is inserted. The movement which precedes the insertion of lower bracings, in
creases with the depth of the excavation.

Thus, when the excavation is completed, the wall will have undertaken a 
movement which is approximately a rotation about the uppermost row of struts. 
Measurements on struts in deep cuts (e. g. Spilker 1937, Peck 1943) have shown 
that this movement is usually sufficient to develop a state of rupture in the 
earth behind the wall. Consequently, we may calculate the earth pressure on the 
wall, corresponding to 5 = qt : h and positive rotation. We have then for homoge
neous earth:

2 A = E = |yh2\ + php + chK 7601
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2 Aq = Ez = |yhsXn + phsp0 + ch5icC 7602

In the case of partly submerged or stratified earth, the principles indi
cated in Sections 62-63 must be employed for determining the total earth pressure

However, it is doubtful whether the distribution of the earth pressure will 
be as indicated by our usual pressure diagram (Section 473). So far, we have only 
used this diagram for walls which are either completely rigid, or which undergo 
elastic deformations in such a manner as to become concave on the side in contact 
with the earth on the "active” side.

Such a deformation will evidently tend to produce the pressure reduction 
on the central part of the wall, which is assumed in our diagrams for active line- 
ruptures. Even so, the diagrams are probably slightly "exaggerated” in this re
spect, which may be seen from the fact that a design of an anchored sheet wall 
with no yield hinge may give a smaller positive moment than a design with a yield 
hinge (see table at end of Example 74c), whereas actually the opposite should 
have been the case.

From the description of the way in which a braced wall is constructed, it 
will be seen that its deformations will make it convex on the side in contact 
with the earth. This will evidently tend to produce a pressure increase on the 
central part of the wall, and careful measurements (see above) have shown that 
the actual pressure distribution is roughly parabolic or trapezoidal.

Consequently, we shall use our usual pressure diagrams (indicated by dotted 
lines in Fig.76A) for determining the total earth pressure and its pressure 
centre, but we shall assume this pressure to have, actually, a trapezoidal dis
tribution over the height of the wall (indicated by the unbroken line in Fig. 76A). 
Ihe corresponding unit pressures at the top and at the foot of the wall are, re
spectively:

7603-04

As regards the distribution of the earth pressure over the different rows 
of struts, this may be found approximately by dividing the trapezoidal pressure 
diagram by horizontal lines bisecting the vertical distances between the indivi
dual rows of struts (see Fig.76A).

Example 76a

As an example, we shall consider a braoed wall in stratified earth (Fig. 76A). Hie upper 
layer consists of loose sand with an actual friction angle of 30°, whereas the lower layer is 
clay with an undrained shear strength of 4 t/m2. In order to be able to design the wall and the 
bracing in the conventional way with ordinary allowable stresses, we shall not apply any safety 
factors to the above-mentioned constants. The given quantities are then:

h = 12 m x = 11 m qi = 11 m Qi = 8 m q3 - 5 m

h7 - 9 m y7 = 1.7 t/m3 <p7 = 30° c7 = 0

h8 -3m Ye = 1.5 t/ma -e CD

II o Cø = 4 t/m:
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♦ 10.7

12.50

Sand

wvwo 7z ttw 7?yz?:

Poj. /?of.

Fig.76A: Braced wall in strati tied earth

We find first £ = 11 : 12-0.92, and get 
then from Graphs 15-16 and 5-6 for positive rota
tion and a rough wall:

W7 - 0.89 X* * 5.66 X, = 0.22

US = 0.765 Ke = 2.57 Kg » - 3.46

As w7 and u)g both correspond to a pressure 
jump within h7, w7 is valid:

y = W7h = 0.89 x 12 = 10.7 m

We can now calculate the following unit 
pressures in the usual pressure diagram:

Above level +10.7 m: 1.7 * 1.3 * 5.66 * 12.50 t/ms
Below level +10.7 m: 1.7 x 1.3 * o. 22 = 0.49 t/ms
Above level + 3. 0 m: 1.7 * 9 * 0. 22 = 3.37 t/ms
Below level + 3.0 m: 1.7 * 9 - 4 x 3.46 = 1.45 t/m2
At level 0. 0 m: 1.45 + 1.5 x 3 = 5.95 t/m2

By means of this diagram (dotted lines in 
Fig.76A) we can calculate:

E = * x 9 x 3.37 + |x 1.3 (12.50 - 0.49) + i * 3 x 1. 45 + £ x 3 x 5.95 

15.2 + 7.8 + 2.2 + 8.9 = 34. 1 t/m

Ez = 15. 2 x 6.00 + 7.8 x 11.13 + 2.2 * 2.00 + 8.9 x 1.00 = 191 tm/m

When the total pressure is distributed trapezoidally (unbroken line in Fig.76A), the 
unit pressures at the top and the foot of the wall will be, respectively (7603-04):

6 x 191
122

^^=2.27 t/m’ . 4 x 34.1 6 x 191 / 2
ef ii * 122 ~3'41t/m

Dividing this diagram in four parts as shown, the following brace thrusts are found: 

A7 =6.0 t/m As = 7.95 t/m Ag = 8.8 t/m A4 = 11.35 t/m

762. Unyielding falls

In some cases a rigid wall may not even be able to make the small movement 
necessary to produce an active state of rupture in the earth. As examples may be 
mentioned a retaining wall founded on rock, and the side walls of a gravity dock.

In such cases we must reckon with the so-called earth pressure at rest. Ac
cording to Tschebotarioff (1948, 1949) this pressure can, at least for gravel, 
sand and normally consolidated clay, be assumed equal to one half of the effect
ive overburden pressure. This means that for i = j = 0 we must assume:

x0 - po - i xo=0 no ■ i e0 = T 7605-08

Possible water pressures must be considered separately. For the earth press
ures the submerged unit wei^it should be used below the water table.



8. STABILITY AND FOUNDATION PROBLEMS

81. CELLULAR COFFERDAMS ON ROCK

811. General

We shall here investigate the stability of a double sheet wall (two parallel 
sheet walls connected by means of two or more rows of anchors) or a cellular cof
ferdam. The walls are placed on the rock surface, which is assumed horizontal. 
Between the walls an earth fill is provided.

For a cellular cofferdam, the effective width w may be assumed equal to the 
width of a strip with the same area as the actual horizontal cross section of the 
cofferdam.

Such a structure was formerly designed simply with a suitable safety against 
sliding and overturning (e.g. Verdeyen 1948). However, in 1944 Terzaghi introduced 
a new method of investigation, viz. regarding the safety against shear along the 
vertical central plane. He found that reasonable agreement with experience could 
be obtained when the earth pressure factor in this plane was assumed to be 0.4 - 
0.5 (for sand).

However, two objections can be raised against this. First, it seems impos
sible to construct a kinematically possible rupture-figure involving one or more 
vertical rupture-lines. Second, according to 3339 (with 3 = 90°) the earth press
ure factor in a vertical rapture-line must be cos2q> (0.75 for <p = 30° and 0.67 
for cp = 35°) and as Terzaghi found that lower values are sufficient, this means 
that a vertical rapture-line cannot be the critical one.

In a very wide cofferdam plastic zones may develop, corresponding to ordi
nary active and passive pressures, but for the usual dimensions this is not pos
sible. We can, however, indicate one figure of rapture which is statically and 
kinematically possible, viz. the simple line-rapture shown in Fig. 81A.

This rapture is of the type X. as the rupture-line consists of a single 
convex circle. The earth below this circle remains at rest, whereas the whole 
earth mass above the circle rotates as one rigid body about the centre of the 
circle. The walls will follow the horizontal movements of the rotating earth 
mass, but will probably not move vertically, althou^i the left wall in Fig. 81A 
may have a tendency to rise.

Incidentally, this concept of a single, curved rapture-line enables a very 
simple stability investigation to be carried out by means of the extreme-method.



224 8. Stability and Foundation Problems

For this purpose it is only necessary to approximate the rupture-line hy a loga
rithmic spiral, take the moments about its pole, and find hy trial the spiral in
volving the smallest safety factor. However, we shall here carry out an equili
brium calculation.

CL sec g

T 7> '^*1* j-----T

Fig.81A: Cellular cofferdam on rock

We consider the equilibrium of 
_ the walls plus the earth above the rup

ture-line. For the sake of simplicity 
we disregard the weight of the walls, 
and also the tangential forces T acting 
on the transverse walls below the rup
ture-line. Further, we disregard the 

h reactions Sy and from the rock, act
ing upon the foot of the right wall in 
Fig.81A. All this is evidently on the 
safe side.

By horizontal projection, hy vert
ical projection, and by taking the mo
ments about the middle point of the 
chord of the rupture-circle, we get:

Q = H 8101

Y^wh + G - V + Q tan g = 0 8102

MR + Q(q - jw tan g) = 0 8103

G is here the (negative) weight of the earth between rock surface and rup
ture-line. ym is an average unit weight for the whole earth mass within the cof
ferdam, whereas y (without subscript) is the unit weight of the earth in the vi
cinity of the rupture-line.

In the equations 8101-03 we can insert 3223, 3325-26 and 3335 with k = w 
and 3 - 0. We have then 3 equations with 3 unknown quantities, viz. a, t’ and 
w, assuming Q, q, g and h to be given. These equations are solved by eliminating 
t’ from 8101 and 8102, which gives a relation between a and w. With an arbitrary 
value of a, the corresponding w is found, and it is then investi^.ted whether 
8103 is satisfied. If not, a must be changed and the calculation repeated until 
satisfactory agreement is obtained. As the rupture-circle is convex, negative va
lues of a must be used, whereas cp and c should be assumed positive according to 
Fig. 81A.

In principle, a similar calculation can be made when the rock surface makes 
an angle 3 with the horizon, but the formulae for such a case will not be indi
cated here.

If we know the magnitude and sign of the wall friction angle 6, we can find 
the unit earth pressures at the foot of the walls by means of 3425 (and 3318), 
but apart from this the present theory does not enable the determination of the 
earth pressures on the two walls separately.



81. Cellular Cofferdams on Rock 225

812. Frlctionless Fill

Inserting 3223, 3353-54 and 3359 (with f3 = 0) in 8101-03, and using also 
3355, we find the following equations:

Q
c Hcy &

cw2m£ + Q(q -

With an estimated value of a we 
whether 8106 is satisfied.

= ymh - cV^ + —■ tan g 8104-05

■§w tan g) = 0 8106

find w from 8104, and investigate then

Examp 1e 81a

As an example, we consider a cellular cofferdam with firm clay fill, 
teral water pressure. The given quantities are (see Fig. 81A which, however,

subjected to uni la- 
is not to scale):

h = 9 i q = éh-3m Q = $Ywh2 = 40. 5 t/m

g = 0 Y = ym = 1.7 t/m3 c * 6.3 : 1.5 = 4. 2 t/m2

We have here divided the actual cohesion hy a safety factor 1.5. For a provisory struct
ure this may be considered sufficient, so that no safety factor need be applied to the water 
pressure.

By means of Table 1 in the Appendix we find, after some trial:

a = - 22° H°y = 0.901 VCy = - 0.768 Mr = -0.253

„ 40.5
— 4.2 x 0.901 10.7 m O’ = 1.7 X 9 + 4.2 * 0.768 * 18.5 t/m2

We can then show that 8106 is satisfied, which means that a has been correctly chosen:

- 4.2 x 10.72 x 0.253 + 40.5 x 3 * 0

813. Cohesionless Fill

By insertion of 3223, 3325-26 and 3335 (with c = 0 and p * 0) in 8101-03, 
we find the following equations:

Y(Gyz - VY + HyV^:H^jw2 + Ymhw + Q(tan g - = 0 8107

t’ = (Ymh + YWGYZ - ywVy + — tan g) :w
8108

YW3M^y + t’w2M^ + Q(q - -§w tan g) = 0 8109

where: VY = VYZ + VYXsin 2cp Hy « Hyz + Hyycos 2cp 8110-11

With an estimated value of a we find w from 8107, t’ from 8108, and invest
igate then whether 8109 is satisfied.
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Examp 1e 81b

We consider here a cellular cofferdam with the same height and exterior load as the one 
in Example 81a, but the fill is now assumed to be well-compacted sand with an actual friction 
angle of 36°. It is also assumed to be well-drained, so that we have an average unit weight of 
Ym = 1.6 t/m3. However, the ground water table probably cannot be lowered below the rupture
line, so that we must here assume y - 1. 0 t/ms.

We apply, as usual, a safety factor of 1.25 to M.. but in addition we shall multiply the 
water pressure hy 1.2, obtaining in this way a total safety of about 1.5. We have thus (see 
Fig.81A, which is to scale):

h = 9 m q - Jh = 3 m Q = 1. 2* lyji2 = 48. 5 t/m

g = 0 y = 1.0 t/m3 Ym = 1. 6 t/m3 <p = 30°

By means of Tables 1 and 3 in the Appendix we find, after some trial:

a = - 32° GYZ = - 0.097 = 0.011 Mr = ‘ °-102

VYZ » - 0.054 VYX = - « 0.167 HYZ = 0.175 Hty « 0.222 Vty = 0.519

VY = - 0.054 + 0.167 X 0.866 = 0.091 HY = 0.175 - 0.167 x 0. 5 * 0. 092

Equations 8107-08 give now:

1.0(- 0.097 - 0.091 + 0.092 x 0.519 : 0.222)w3 M.6*9i - 48.5 x 0.519 : 0.222 
* 0.027 w2 + 14. 4 w - 113.4 = 0 w = 7.75 m

t' = (1.6 x 9 . 1.0 x 7.75 x 0.097 - 1.0 x 7.75 x 0.091) : 0.519 = 24.9 t/m2

We can then show that 8109 is satisfied:

1.0 x 7.753 x o.Oll - 24.9 x 7.75* x 0.102 + 48.5 x 3 = 0

It should be noted that we have found w : h - 0,86, which is very nearly the same as the 
value most commonly used in practice (0.85).

82. CELLULAR COFFERDAMS IN EARTH 

821. General

We shall now investigate the stability of a cellular cofferdam (or a double 
sheet wall), the piles of which are driven into the ground. The ground surfaces, 
which are assumed horizontal, may be located at different levels at the two sides 
of the cofferdam.

When the driving depth is shallow, the whole cofferdam will, in the state 
of failure, rotate about a point below itself (Pig.82A). Correspondingly, we get 
a rupture X between the walls, but in addition a rupture P (rough wall) or R 
(smooth wall) occurs at each exterior side, passive on the right side, and active 
on the left. The corresponding exterior earth pressures are, in this case, inde
pendent of the actual location of the rotation centre.
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Fig.82A: Rupture X in cellular cofferdam Fig.82B: Rupture A in cellular cofferdam

When the driving depth is greater, the rotation centre will be located 
above the foot of the walls. Between the walls we will get a rupture A (Fig. 82B) 
or a rupture AwXwA (Fig.82C). Outside the walls the ruptures will probably be of 
the type AaR (smooth wall) or AaP (rough wall). In these cases the exterior earth 
pressures depend on the location of the rotation centre, and (in the case of 
rough walls) also on the vertical 
movements of the walls. We may, 
however, as an approximation, use 
the constants found from the 
graphs in the Appendix, although 
the values indicated for rough 
walls correspond to "normal” ro
tations only.

In principle, the rupture 
AwXwA can be treated by means of 
the present theory, but the for
mulae and the calculation become 
rather complicated. For this rea
son we shall investigate in the 
following the ruptures X and A 
only.

We consider the equilibrium 
of the cofferdam proper, including 
the inside earth above the rupture
line. Ry horizontal projection, by
vertical projection, and hy taking Fig.82C: Rupture AwXwA in cellular cofferdam
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the moments about the middle point of the chord of the rupture-circle, we get 
(see Pigs. 82A-B):

Q * H - E, + E2 Ymwh + G- V-F1-F2+Qtang=0 8201-02

Mr + Q(q - |w tan g) + ■|w(F1 - F2) + E1z1 - E2z2 = 0 8203

When we consider h, hi, h2, Q, q and g as given quantities, the only un
known quantities are o, t’ and w as in Section 81. For E, F and z we have the 
usual expressions 6118-20, and the constants in these equations can be found by 
means of the graphs in the Appendix when £ is known.

In order to solve the equations 8201-03 we insert 3223, 3325-26 and 3335 
with k = w and 8 = 0. Further, we eliminate t’ from 8201 and 8202, obtaining 
thereby a relation between a and w.

In the case of a rupture X (Fig.82A) we know the external earth pressures 
in advance. Therefore, we need only estimate a value of a, find successively the 
corresponding w and t’ , and change a, if necessary, until 8203 is satisfied.

In the case of a rupture A (Fig.82B) we can use the same procedure in prin
ciple, but we must start by estimating not only a but also w in order to be able 
to calculate the external earth pressures. We have namely:

x w cot a 
£l = hr = 2h4

w cot a 
2h2

8204-05

When w has been found from the above-mentioned relation between a and w, 
we must adjust the values of £\ and S2 and recalculate w before proceeding to 
find t’ and investigate whether 8203 is satisfied.

Whereas we must assume <p and c positive and a negative for the rupture X, 
the reverse should be done for the rupture A.

Apart from the unit earth pressures at the foot of the walls, the inside 
pressures on the two walls cannot be determined separately hy means of the pre
sent theory. However, in the case of a double sheet wall with only one row of 
anchors, the right wall in Figs.82A-C may be calculated approximately by assum
ing a state of failure as shown in Fig. 74F.

For shallow driving depths the rupture X will always be the most critical 
one. For greater driving depths the most critical rupture cannot be indicated in 
advance, and in such cases it may therefore be necessary to investigate both 
rupture X and A, and possibly also AwXwA.

Moreover, when the driving depth is considerable, it will be necessary to 
investigate whether the walls of the structure are strong enough to prevent a 
failure as the one shown in Fig.82D. It is here assumed that a yield hinge will 
develop in each wall and that the upper parts of the walls and the fill will ro
tate about the centre of a convex rupture-circle, whereas the lower parts remain 
stationary.
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Por kinematical reasons the rupture- 

circle must meet the walls tangentially, 
which means that we have a = - 90°. In 
each yield hinge we have a yield moment M 
and no transversal force, whereas an axial 
force may occur, unless the walls are per
fectly smooth. However, as we cannot cal
culate the individual earth pressures on 
the two walls, we cannot find these axial 
forces either, and we shall therefore dis
regard them, this being on the safe side.

If we measure the different heights 
from yield hinge level (Pig.82D), the 
equations of equilibrium for the moving 
parts of the walls and the fill will be 
identical with 83)1-03, with the exception 
that the left side of 8203 should equal 
2M instead of zero.

Ihe procedure is now the following.
After having found the necessaiy width w 
hy means of the stability calculation as previously described, we estimate a 
smaller h than the actual height of the cofferdam, and investigate whether the 
corresponding relation between a and w is satisfied with a = - 90° and the actual 
value of w. If not, we must change h, until satisfactory agreement is obtained. 
The left side of equation 8203 indicates then the corresponding yield moments 2M.

If M is found to be negative, or h to exceed the actual height of the cof
ferdam, this means that the considered rupture-figure with two yield hinges (Pig. 
82D) is less critical than the rupture-figure used in the stability calculation.

If, on the other hand, we find a positive M, and a smaller h than the actu
al height of the cofferdam, we must either make the walls of the cofferdam strong 
enough to resist the calculated moments with our usual "allowable” stresses, or 
we must increase the width w in order to reduce the moments.

The above applies to double sheet walls. In a cellular cofferdam the flat 
sheet piles have only a negligible section modulus, and, although the transverse 
walls will probably provide a certain resistance, this is difficult to calculate. 
Therefore, in order to be on the safe side it is recommended to construct cellu
lar cofferdams of such a width that no critical failure of the type shown in Pig. 
82D can occur with positive yield moments M.

It should be noted that, even if the width is so great that positive yield 
hinge moments are not found, or even if the walls are designed to resist the cal
culated yield hinge moments, this does not necessarily mean that the walls will 
be strong enough to resist any type of failure. On the contrary, it is probable 
that other, considerably more complicated types of failure may occur, which have 
not been investigated here.

Fig.82D: Cellular cofferdam 
with yield hinges
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82 2. Frictionless Earth

By insertion of 3223, 3353-54 and 3359 (with 3 = 0) in 8201-03 (8203 with 
2M instead of 0 on the right side), we find the following equations:

Q + Ei - E2 o’ “ Ymh - cVcy + -^ tan g - — * Fg 8206-07

cw2M^ + Q(q - |w tan g) + 5W(Pt - F2) + E^ - E2z2 = 2M 8208

In a stability calculation we find w from 8206 with an estimated value of 
a, and investigate then whether 8208 is satisfied,with M = 0.

In a yield moment calculation we estimate h and investigate whether 8206 
is satisfied,with a = - 90° and the actual w. 8208 gives then the yield hinge 
moment M.

823. Cohesionless Earth

By insertion of 3223, 3325-26 and 3335 (with c = 0 and 3 = 0) in 8201-03 
(8203 with 2M instead of 0 on the right side), we find the following equations:

Y(GYZ . vY + HYVty;Hty)w2 + Y^w

+ Q tan g - (Q + Ei - E^V^H^ - Pi - P2 = 0 8209

t’ = (Ynjh + ywG^z - y«Vy + — tan g - —-----—) : 8210w w

YW3mYY + t’w2M^ + Q(q - fw tan g) + lw(Pi - P2) + EjZi - E2z2 = 2M 8211

where VY and HY are defined hy 8110-11.

In a stability calculation we find w from 8209 with an estimated value of 
a, then t’ from 8210, and finally we investigate whether 8211 is satisfied, with 
M = 0.

In a yield moment calculation we estimate h and investigate whether 8209 
is satisfied, with a = - 90° and the actual w. 8211 gives then the yield hinge 
moment M.

In the case of hydrodynamic water pressures the design is, as pointed out 
hy Terzaghi (1944), more often governed hy the necessity of obtaining safety 
against piping and boiling than hy stability considerations.
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Example 82a

+ 2.0

Sand

- yy.<?

Fig.82E: Cellular cofferdam 
as quay wall in sand

As an example we shall consider a 
quay wall built of cellular cofferdams 
(Pig.82E). The natural ground as well as 
the fill consists of sand with an actual 
friction angle 36°. Applying a safety fac
tor 1.25 to p we find that the calculation 
should be carried out with ip = 30°. The ex
terior force Q is a bollard pull. The given 
quantities are:

ho ' 10 m h - hi = q - 13 m

hj - 3 1 h5 = 2 ■ hg=llm

Pi = 3 t/m2 0=2 t/m g = 0

Ys = 1.8 t/m3 Y6 = Ya = Y = 1.0 t/m3

<P = 62 = - = 30° c = a = 0

We find first the average unit 
weight of the fill inside the cofferdam:

Ym = (2 x 1.8 + 11 x 1.0) : 13 • 1.12 t/m3

and then the exterior earth pressures. 
using the constants indicated in the table 
in Section 523 for cp = 30° and a rough wall:

Ei = 3 X 13 X 0.273 + T X 1.8 X 132x 0.266 - \ x 0.8 x n2x 0.266 = 10. 6 + 40.5 - 12.9 = 38.2 t/m

EiZi = 10.6 X ^ x 13 + 40.5 X ^ X 13 . 12.9 x 4 X 11 = 197 tm/m

Es = 5 X 1.0 X 3=x 5.66 = 25.5 t/m EaZs = 25. 5 x | x 3 = 25. 5 tm/m

Ft = - 38.2 x 0.577 = - 22.0 t/m P2 = 25.5 x 0.577 = 14.7 t/m

By means of Tables 1 and 3 in the Appendix we find, after some trial, for the rupture X: 

Ot - - 56° Gyz = - 0. 187 M^y = 0.004 MY = - 0. 118

VYz = - 0.073 VY* = - HYy = 0.121 HYz = 0. 157 Hty = 0.068 Vty = 0.406 

yY = - 0.073 + 0. 121 x 0.866 = 0.032 hY = 0.157 - 0.121 x 0.5 = 0.096

Equations 8209-10 give now:

1. 0(- 0.187 - 0.032 + 0.096 x 0.406 : 0.068)w2 + 1. 12 x 13 w

- (2 + 38. 2 - 25.5) x 0.406 : 0.068 + 22.0 - 14.7 *

0.354 w2 + 14.5 w - 80.5 =0 w = 4. 95 m

t’ = (1.12 x 13 - 1.0 x 4.95 x 0.187 - 1.0 x 4.95 x 0.032 + 7.3 : 4.95) : 0.406 = 36.8 t/m2

We can then show that 8211 is satisfied (with M = 0):
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1.0 X 4.953* 0.004 - 36. 8 * 4. 95s* 0. 118 + 2 * 13 - £ * 4.95 * 36.7 + 197 - 25. 5 = 0

By a yield moment calculation with w - 4.95 m and a - - 90° we would find h = 14.9 m and 
M = - 37 tm/m. This shows that the yield hinge failure is less critical than the stability 
failure.

By a stability calculation with a rupture A, we would find a = 85.5°, x = 0.17 m and 
w = 4.35 m. This shows that the rupture A is less critical than the rupture X. A rupture AwXwA 
has not been investigated.

83. FURTHER POSSIBLE APPLICATIONS

831. Deteriination of Anchor Lengths

In Section 364 (Example 36m) it has been explained that, in order to deter
mine the necessary anchor length, i. e. the safe distance between an anchored 
sheet wall and its anchor slab, we must investigate a stability failure of the 
composite X-type (Fig.,36L, right).

Such an investigation can, in principle, be made hy means of the equilibri
um method in a similar way as for a double sheet wall (Section 82), the only dif
ference being that we must reckon with 8+0.

1

y/Åw/WVAv

1

However, in this case 
it is actually much simpler 
to employ the extreme-method,

E scd using a logarithmic spiral
as the main rupture-line (Fig. 
83A). The spiral should not 
correspond to the actual fric
tion angle but to a smaller 
angle obtained hy applying a 
safety factor to 11. The ac
tual cohesion, if any, should 
also be divided hy a safety 
factor.

For an arbitrary spiral 
we consider now the equili
brium of the two walls plus 
the earth mass above the spi

ral (Fig. 83A). A vertical line through the pole of the spiral divides the weight 
of this mass in a driving part G^ and a stabilizing part Gg (submerged unit 
weights should be used below the water table). Further driving forces may be a 
surcharge to the left of the pole, a differential water pressure on the sheet 
wall, and a bollard pull. Finally, the active earth pressure on the back of the 
anchor slab is also a driving force, whereas the passive earth pressure on the 
front of the sheet wall is a stabilizing force. Both these forces are known, as 
they correspond to ruptures R (smooth wall) or P (rough wall). A possible cohe
sion in the rupture-line is, of course, also a stabilizing force.

1 To pole of spiral

Fig.83A: Determination of anchor length
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Taking the moments of all these forces about the pole of the spiral, we 
can define a ratio f by the equation:

Mg MG + MeP + Mc

f ""d ’ % + V * t +MPW + MQ 830

By trial we find now the critical spiral, i. e. the one for which f is a 
minimum, and if min, f > 1, the structure is sufficiently stable. If we wish to 
determine the smallest possible anchor length, we must find min. f for two or 
three different lengths w, and min.w will then be the value, for which we get 
min. f = 1, (provided that safety factors have already been applied to <p and c).

Example 83a

We shall determine the necessary length of the anchors connecting the sheet wall in 
Example 74c (Fig. 74E) with the anchor slab in Example 72b (Fig. 720. We have from these examples:

cp = 6P = - 6* = 30° c = a = 0 Q = 0 h2 = 2.2 m h5 = 2 m

Y5 = 1.8 t/m3 Y6 = Yv * 1.0 t/m3 p = 1 t/m2 P„ = 0. 5 t/m2

E® = 1. 70 t/m za = 0.84 m Fa = - 0.98 t/m

In Example 74c we have calculated E2 as for a rupture SfP, but here we must assume a 
rupture P. for which we find:

E® = i X 1. o X 2. 22* 5.66 = 13. 7 t/m z11 =|x 2.2 =0.73 m FP = 13.7 * 0. 577 = 7. 9 t/m

After some trial we find with w = 12.3 m the critical spiral shown in Fig.83A. Its pole 
is situated 6.8 m behind the sheet wall and 27.7 m below ground surface. For this spiral we get 
(see indicated levels on Fig. 74E):

Mp =(1.8*2*10*0. 15)* i * 5. 52 * 1.0 * 2.4 * f * S.S! • 1.0 * 0.2 * J * 5.5! = 67 tm/m 
s

Mp = (1.8 * 2 + 1.0 * 2.55)* I * 6.82 * 1.0 * 5.65 * | * 6.8* - 1.0 x o. 55 * 4 * 6. 82 = 220 tm/m 
vd

Mga = 1.70 x 26. 39 - 0. 98 x 5.5 = 39 tm/m 

Mgp = 13.7 x 18.23 + 7.9 x 6.8 = 304 tm/m

-f- ~ 220 + 39 + 23 + 89 tl^L

Any other position of the spiral gives a greater f. Consequently, the minimum anchor 
length is 12. 3 m.

Mp = 1 X A x 6. 82 = 23 tm/m Mc = 0

NL = 0.5 x 8.2 x 21.6 = 89 tm/m MQ = 0
*w **

67 * 304

832. Stability of Slopes

In the usual investigation of stability problems, curved 
used in combination with the extreme-method. For cp = 0 circles 
? 4 0 logarithmic spirals. An example of such an investigation 
tion 831.

rupture-lines are 
are used, and for 
is given in Sec-
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However, as explained in Section 364, stability investigations can also be 
made hy means of the equilibrium method, viz. by means of KStter1 s equation and 
the boundary conditions developed in Section 34. This implies the advantage that 
circular rupture-lines can be used, even for q> 4= 0.

In the general case of an A-failure (see Fig.36K, left) the rupture-circle 
involves 3 unknown geometrical parameters (e. g. the coordinates of its centre and 
the length of its radius). A fourth unknown quantity is the actual factor of safe
ty. However, we also have 4 equations, viz. 3 equations of equilibrium for the 
earth mass above the rupture-line, and a relation (3318) between the boundaiy 
stresses at the two ends of the rupture-line.

The latter condition does not apply when the rupture-line aids at a singu
lar point such as the comer at the foot of a slope, as at such a point the 
boundary condition becomes indefinite. As, however, in this case the rupture- 
circle involves 2 unknown geometrical parameters only, the problem is still sol- 
ubl e.

The same applies when the rupture-circle touches firm bottom or a struct
ure. In such cases it involves 2 unknown geometrical parameters only and these, 
together with the safety factor, are determined by means of the 3 equilibrium 
conditions. In order to find the forces in the rupture-line the two parts must 
be considered separately, using for each part the boundaiy condition at the point 
where it meets the surface. No definite relation exists between the stresses at 
the sides of the point where the rupture-line touches firm bottom or a structure.

In the special case of the rupture-circle ending at a singular point and 
touching firm bottom or a structure, it involves only one unknown geometrical 
parameter. However, in this case the boundary stress at the singular point is 
another unknown quantity. These two, together with the safety factor, are deter
mined hy means of the 3 equilibrium conditions.

It will be seen that stability problems can, in principle, always be solved 
by means of the equilibrium method. However, in view of the simplicity of the 
usual extreme-method, it is doubtful whether anything would be gained hy substi
tuting it with the equilibrium method, except perhaps in special cases.

833. Strip Foundations

The case of a strip foundation can, in principle, be treated in the same 
way as that of an inclined wall exerting passive pressure on the ground.

Usually, the underside of the foundation will be located somewhat below 
ground level, but it will be simpler to consider the soil above foundation level 
merely as a surcharge and thus reduce the case to that of a foundation with its 
underside at ground level.

Moreover, although the law of superposition is, strictly speaking, not 
valid, it will probably be preferable to consider the effect of a surcharge and 
that of the weight of the soil separately. Later, the results may be added, giv
ing a very good approximation. The effect of a possible cohesion can be found on
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the basis of the calculation for the surcharge in a similar way as that indicated 
in Section 612 for a vertical wall. For cp =. 0, the effect of the cohesion must, 
of course, be calculated separately.

With regard to the relative roughness of the underside, both the extreme 
cases may be considered, viz. a perfectly smooth base and a perfectly rough one. 
The investigation might comprise centrally, as well as eccentrically loaded found
ations, and also foundations with horizontal as well as vertical loads.

All this can in principle be done by means of the equilibrium method in 
very nearly the same way as employed in Section 5 for the investigation of earth 
pressures on a vertical wall, but other rupture-figures must, of course, be con
sidered. However, a complete investigation of this kind lies beyond the scope of 
the present work.

Moreover, it is possible that such an investigation would be of rather li
mited value in practice, as foundations designed with a reasonable safety against 
ultimate failure would probably, even under normal loads, undergo settlements 
which would be unallowable for most superstructures.
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The proposed new method is an equilibrium method, i.e.. the unknown quanti
ties are determined by means of the statical equilibrium conditions for finite 
parts of the structures and the earth masses. The latter are bounded by rupture
lines, which are approximated by one or more circles and straight lines.

The necessary knowledge of the stresses in an arbitrary rupture-circle is 
obtained from two sources. First, the stress variation is determined by means of 
KOtter’s equation. Second, the stress at the surface or at any other boundary is 
determined by means of a certain boundary condition in such a way that the equi
librium-method will give the same results as a corresponding extreme-method.

In order to calculate or design an earth-retaining structure it is neces
sary to choose first an arbitrary but plausible state of failure as the basis of 
the calculation. The next step is to investigate one or more figures of rupture 
in the earth, involving plastic deformations which are compatible with the move
ments of the structure in the chosen state of failure.

The corresponding earth pressures on the structure are found by means of 
the equilibrium conditions for the earth masses bounded by the critical rupture
lines. Finally, the dimensions of the structure are determined in such a way that 
the equilibrium conditions for the structure proper are satisfied.

This method has been applied to the majority of plane earth pressure prob
lems encountered in practical engineering, viz. retaining walls, anchor slabs, 
free sheet walls, anchored sheet walls, fixed sheet walls, braced walls, double 
sheet walls and cellular cofferdams. The method is also applicable to stability 
and foundation problems, but these lie beyond the scope of the present work.

The proposed method is applicable to earth with internal friction or cohe
sion or both, to walls with any inclination and roughness, and to ground surfaces 
with any slope and surcharge. The effects of hydrostatic or hydrodynamic water 
pressures can be taken into account, at least approximately, and the same applies 
to the case of stratified earth.

91. Review of Method and Applications

92. Comparison of Theory with Experience

Like most other calculation methods, the author* s is based on several sim
plifying assumptions and approximations, sometimes of a merely tentative character.
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It is, therefore, most important and necessary to compare the results of 
the new theory with suitable tests and general practical experience. Considering 
the wide range of applications this is a tremendous task, and one which the 
author has felt himself unable to cope with. He has, therefore, confined his own 
work mainly to the development of the theoretical calculation methods, hoping 
that others will later attempt to prove or disprove his results and that, in the 
meantime, his methods may be used with suitable caution, until better methods 
are available.

However, the connection established by the author between the new method 
and the well-known and widely used extreme-methods should be a safe-guard against 
serious errors, because it has beer demonstrated repeatedly that extreme-methods 
will produce very reliable results when used properly. Important examples are the 
“<j> = 0”-analysis of slopes and the use of Coulomb’s method for the design of 
retaining walls.

Further checking of the new method can be undertaken by comparison with 
suitable model tests, of which a considerable number has already been carried 
out.

In a small way the author’s own model tests (see Section 5) have shown 
that most of the rupture-figures assumed in the calculations will actually occur 
in nature. They have also shown, however, that the actual rupture-figures are 
sometimes considerably more complicated than those assumed in the calculations.
On the other hand, this does not necessarily mean that serious errors are intro
duced. As an example may be mentioned the fact that the straight rupture-lines 
assumed in Coulomb’s calculation of active zone-ruptures give practically the 
same value of the active earth pressure as the actual, more complicated rupture- 
figure. This shows that small deviations between the theoretical and the actual 
rupture-figure are unimportant from a practical point of view.

Not all tests can be used for checking the results of the new method, but 
only those corresponding to the state of ultimate failure on which the method 
is based. This excludes, for example, most of the otherwise very valuable Prince
ton Tests (Tschebotarioff 1948, 1949), because these tests were intended for the 
investigation of anchored steel sheet walls under normal working conditions. Con
sequently, the tests were not carried to actual failure. That this is so may be 
seen from the fact that very different results were obtained with backfilled and 
with "sunk” walls. In the ultimate state of failure it would make no difference 
which of these construction methods had originally been employed. Similar re
marks apply to the extremely interesting and very comprehensive series of tests 
made by Rowe (1952).

In addition to model tests also a number of full-scale tests are already 
available, some of which might be used for the purpose of checking the results 
of the new calculation method. This applies particularly to the problem of braced 
walls in cuts. For such walls the theory indicates that the pressure centre 
should usually be located near the middle of the wall. Actual measurements have 
given the same result (Spilker 1937, Peck 1943). Also the magnitudes of the cal
culated and the observed pressures agree rather well, being somewhat in excess 
of the normal active pressures.
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Further, there exists a considerable amount of general practical experi
ence. which may be used as an approximate check on the designs arrived at by 
means of the new method. An example of this is provided by a sand-filled cellu
lar cofferdam on rock, subjected to unilateral water pressure. With a safety 
factor of 1.5 the new method leads to very nearly the same ratio between width 
and height as that \diich has proved satisfactory in practice.

Finally, in a few cases it is possible to compare the new method with em
pirical calculation methods, which have proved their suitability in practice.
An outstanding example of this are the so-called Danish Rules for the design of 
anchored sheet walls. Although resulting in smaller dimensions than most other 
design methods, they have been used successfully for the design of a great num
ber of structures (Brinch Hansen 1946).

It is, therefore, of interest to note that with suitable safety-factors 
the author’s design methods may lead to virtually the same results as might have 
been obtained by means of the Danish Rules. A demonstration of this fact has been 
given at the end of Example 74c, where it is also shown that the empirical me
thods of Tschebotarioff and Rowe would lead to practically the same results, ex
cept for the driving depth.

However, in view of the still rather scanty corroboration the reader is 
warned not to go to extremes in the application of the new method, e. g. by design
ing structures which deviate veiy considerably from those which have proved safe 
in practice. This warning applies especially to cellular cofferdams (or double 
sheet walls) in earth, because the stresses in the walls cannot be calculated, 
and also to anchored or fixed sheet walls in not too soft clay. In the latter 
case the theory of rupture might lead to very small earth pressures, which, how
ever, in time are almost certain to increase considerably, due to the viscosity 
of the clay.

Finally, as regards the question of whether to assume rough or smooth walls, 
it is evident that concrete walls in sand are perfectly rough, and the same is 
approximately true for steel and timber walls in sand. In clay, the layer in con
tact with the wall is likely to be softened (under water), and for this reason 
the author prefers, usually, to assume walls in clay to be perfectly smooth.

93. Original Contributions by the Author

As far as the author is aware, the main part of what is contained in Sec
tions 3-8 is new. However, the most important of the author’s original contribu
tions to the subject of earth pressure calculation are, in his own opinion, the 
following:

1) A connection has been established between the extreme-method and the 
equilibrium-method, leading to a certain boundary condition hy means of which a 
general application of the equilibrium-method has been made possible.

2) The principles have been developed for a general earth pressure theory, 
based mainly on the equilibrium-method, and making use of KStter’s equation as 
well as the above-mentioned boundary condition.
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3) A set of tables has been prepared hy means of which the internal forces 
in a rupture-circle can be calculated quickly and easily for <p = 0° or <p = 30°.

4) A systematic analysis has been made of different rupture-figures, espe
cially the so-called composite ruptures, which have hardly received any atten
tion before. A convenient system of denominations for rupture-figures has also 
been proposed.

5) An analysis has been made of different states of failure which may occur 
in earth pressure and stability investigations.

6) General methods have been indicated for calculation of the earth press
ures corresponding to the most important figures of rupture. They include a new 
approximate method for the calculation of zone-ruptures.

7) A set of graphs has been prepared, by means of which it is possible to 
calculate the earth pressure on a vertical wall (horizontal ground surface) ro
tating about any given point on the wall proper or its extensions. The graphs 
may be used for any friction angle, and for smooth as well as rough walls.

8) Although the earth pressure distribution is, in principle, indetermi
nable (except for zone-ruptures), a simple, tentative earth pressure diagram has 
been proposed. Moreover, this diagram has been used to take into account, in an 
approximate but simple way, the effects of water pressures and stratified earth.

9) For the design of retaining walls new formulae have been developed 
which are more accurate than Coulomb’s and usually on the safe side.

10) For the design of anchor slabs a new method has been indicated which 
takes into account the fact that the inclination of the passive earth pressure 
is limited hy the equilibrium conditions.

11) For free sheet walls, anchored sheet walls and fixed sheet walls, com
pletely new design methods have been developed.

12) For the design of braced walls in cuts a simple approximate method 
has been proposed.

13) Completely new methods have been developed for the stability investi
gation of cellular cofferdams, on rock as well as in earth.

14) A simple extreme-method has been indicated for the determination of 
the necessary distance between an anchored sheet wall and its anchor slab.

15) A number of small-scale model tests have been carried out in order to 
study the different rupture-figures occuring in sand fcy the rotation of a rigid 
vertical wall about different points.

94. Unsolved Problems

Although the proposed new method has proved its ability to solve many dif
ferent problems, it has, of course, its limitations. The most important of the 
problems which the author has not solved, or for which he has proposed tentative 
solutions only, concern the following:
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1) Calculation methods for clay, considered as a material with internal 
friction and pore water pressures, possibly also as an inhomogeneous, anisotropic 
and viscous material.

2) Calculation methods for sand, considered as a dilating material.

3) Calculation methods for soils with intermediate permeabilities, e.g. 
silts and mixtures of sand and clay.

4) More complete investigations of rupture-figures for cohesive soils with 
partly unsupported earth fronts.

5) Establishment of the proper boundary condition for rupture-lines meet
ing at a rough wall, or at an internal boundary between layers with different 
friction angles.

6) A quantitative investigation of the plastic deformations which may take 
place in zone-ruptures and composite ruptures, and a corresponding calculation 
of the more complicated ruptures which actually occur by the rotation of a vert
ical wall.

7) Calculation of earth pressures corresponding to the rotation of a rough 
vertical wall about points which are not situated at the wall proper or its ex
tensions.

8) Determination of the actual pressure distribution on rigid, hinged and 
flexible walls.

9) Construction of earth pressure graphs for inclined walls and sloping 
ground surfaces, and development of calculation methods for walls and surfaces 
of any shape.

10) Calculation methods for non-uniform surcharges.

11) More exact calculation methods for cases of hydrodynamic pressures.

12) Calculation methods for anchor slabs at considerable depths, and for 
non-continuous anchor slabs.

13) The effect of piles behind a sheet wall, e.g. in a C&N-wharf.

14) More exact calculation methods for braced walls in cuts.

15) Determination of earth pressures on the individual walls of cellular 
cofferdams or double sheet walls.

16) Methods for calculating the deformations and movements of earth re
taining structures under normal working conditions.

17) Determination of earth pressures on unyielding walls and underground 
structures.

18) Application of the new method to slopes and other stability problems.

19) Application of the new method to strip foundations and similar problems.

20) Calculation methods for non-plane problems.



APPENDIX

NOTATIONS AND SIGN KULES

The following list contains all main symbols used in the present book. The special sym
bols used in Section 2 are not listed, however. In a few cases, where no misunderstandings could 
possibly be made, the same symbol has been used to represent two or more different quantities.

The symbol K has, with various subscripts, been used to represent a great number of dif
ferent constants or abbreviations, and any such symbol K can therefore only be used in the Sec
tion. in which it is defined.

Por many of the symbols various subscripts or superscripts are used. The most important 
of these are listed below, and for the others the meaning is given in that section, wherein they 
first occur.

Many of the symbols can have either positive or negative values. In such cases the defini 
tion of signs is indicated in a parenthesis. Compare also Fig. N, in which all the indicated quan 
tities are shown positive.

In order to be able to state general sign rules it is necessary to define first the fol
lowing concepts. A concave (resp. convex) rupture-circle is one which turns its concave (resp. 
convex) side towards the moving earth mass. One end point of the circle is chosen as the start
ing point (’) and the other as the finishing point (”). A positive (resp. negative) rotation is 
one which corresponds to a movement through a concave (resp. convex) circle from the starting 
point towards the finishing point.

Fig.N: Symbols regarding wall and adjacent earth wedge
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A = Component normal to wall of anchor pull or brace thrust.
E = Normal component of total earth pressure on wall (positive when producing compression).
F = Tangential Component of total earth pressure on wall (positive when acting upwards on 

wall, downwards on earth).
G = Weight of earth wedge or part thereof (positive downwards).
G„ = Weight of wall (positive downwards).
H = Horizontal component of internal forces in rupture-line (positive when, acting on moving 

earth mass, a positive rotation of 90° would direct it upwards).
K = Various constants and abbreviations (defined where they occur).
L = Axial load on top of wall (positive downwards).
M = Moment in wall (positive when producing tension in exterior side of wall).
M = Moment about middle point of chord in rupture-circle (positive when, acting on moving 

earth mass, it corresponds to a positive rotation).
M° = Moment about centre of rupture-circle (sign rule as above).
M^ * Moment about foot of wall (sign rule as above).
P = Total vertical surcharge on surface of earth wedge or part thereof (positive downwards).
Q = Normal component of exterior force on wall.
Rg = Component, in a direction making angle g with vertical, of internal forces in rupture-line 

(positive when, acting on moving earth mass, a negative rotation g would direct it upwards). 
S - Axial point resistance on foot of wall (positive upwards).
T = Section area, especially of anchor bars.
U = Vertical resultant of V, G and P (positive upwards).
V “ Vertical component of internal forces in rupture-line (positive upwards when acting on

moving earth mass).
W = Section modulus, especially of sheet walls.
a = Unit adhesion between wall and earth (positive when acting upwards on wall, downwards on 

earth).
b = Distance from top of wall to meeting point of two rupture-lines.
c = Unit cohesion in rupture-line (positive when acting on moving earth mass in direction 

from starting point towards finishing point).
c - Apparent cohesion of the earth (always positive in equations such as 4119-25 and 6118-22). 
d = Depth below ground surface, measured along wall (positive downwards).
d° “ Depth at which the unit normal earth pressure is zero.
e - Normal component of unit earth pressure on wall (positive when producing compression), 
f - Tangential component of unit earth pressure on wall (positive when acting upwards on wall, 

downwards on earth).
f = Ratio between stabilizing and driving moments in stability investigations, 
g - Angle between vertical and direction of Rg (positive when Rg must make a negative rotation 

g in order to be directed upwards).
g - Angle between horizon and direction of Q (positive when Q must make a negative rotation of 

90o+g in order to be directed upwards), 
h - Height of wall or part thereof, measured along wall. 
h° * Critical height of unsupported earth front. 
hc = Height of capillary rise.
hw = Difference between water levels on two sides of wall (positive when inside water level is 

higher than outside).
i » Angle between horizon and ground surface (positive when the surface must make a positive 

rotation i in order to become horizontal): 
i = Hydraulic gradient (positive when directed downwards).
j = Angle between vertical and wall (positive when the wall must make a positive rotation j 

in order to become vertical), 
k = Length of chord in rupture-circle, 
m - Angle between wall and straight line with length b. 
m * Critical ratio between two heights, 
n ” Factor of safety, 
n " Porosity of soil.
p = Unit vertical surcharge, per unit area of sloping surface (positive downwards).



Notations and Sign Rules 243

Pc " = Unit capillary pressure.
pw = Y*!*, = ^nit differential water pressure (positive when acting on interior side of wall).
Q = Distance from foot of wall to pressure centre of A or Q (positive upwards), 
r = Radius of rupture-circle (positive for a concave circle, negative for a convex one), 
s = Actual height of anchor slab, measured along slab, 
s = Length of arch along rupture-line.
t = a sec <j> = Resulting stress exclusive of cohesion c, in rupture-line (positive when pro

ducing compression).
u = Displacement or velocity vector in rupture-line (positive when directed against shear 

stress from below), 
u * Water pressure potential.
v = Angle between horizon and rupture-line (positive when the tangent, directed from starting 

point towards finishing point, must make a positive rotation of 90o+v in order to be di
rected upwards).

w = Width of earth wedge or part thereof, measured along ground surface, 
w - Width of cellular cofferdam or double sheet wall.
x = Distance from foot of wall to rotation centre for wall (positive upwards),
y = Distance from foot of wall to jump in pressure diagram,
z = Distance from foot of wall to earth pressure centre (positive upwards).
zw = Distance from foot of wall to gravity centre of wall.

a « Half central angle in rupture-circle (positive for a concave circle, negative for a con
vex one).

3 = Angle between horizon and chord in rupture-circle (positive when the chord, directed from 
starting point towards finishing point, must make a positive rotation of 90°+3 in order to 
be directed upwards).

Y = Effective unit weight of earth.
Ym = Average unit weight of earth in cellular cofferdam or double sheet wall.
Ys = Specific gravity of solid earth particles.
Yw = Specific gravity of water.
6 = Angle of wall friction (positive when the pressure is directed upwards on wall, downwards

on earth).
e = Normal strain (single subscript, shortening positive) or shear strain (double subscript).
£ = Height-factor for c-term in formula for Ez.
r\ = Height-factor for Y-term in formula for Ez.
9 = Height-factor for p-term in formula for Ez.
K = Pressure-factor for c-teim in formula for E or e.
X = Pressure-factor for y-term in formula for E or e.
U = tan <p = Coefficient of internal friction (sign as <p).
V * e4pfl = Abbreviation in stress formulae (e = basis of natural logarithms).
£ - x : h = Height-factor for rotation centre of wall.
p = Pressure-factor for p-term in formula for E or e.
O = Normal stress, especially in rupture-line (positive when producing compression).
O = "Allowable” stress for structural material.
T = Shear stress , especially in rupture-line (positive when acting on moving earth mass in 

direction from starting point towards finishing point).
<p * Apparent angle of internal friction (positive when corresponding to a positive T).

* arc tan 2p. = Abbreviation for constant angle in stress-formulae (sign as <p). 
w = y : h = Height-factor for jump in pressure diagram.

Superscript ’ indicates the starting point of a rupture-line.
Superscript ” indicates the finishing point of a rupture-line.
Superscript a indicates active earth pressure.
Superscript p indicates passive earth pressure.
Superscript x indicates earth pressures above pressure jump.
Superscript y indicates earth pressures below pressure jump.
Subscript f indicates the foot of the wall.
Subscript £ indicates the top of the wall.
Subscript indicates a perfectly rough wall.
Subscript s indicates a perfectly smooth wall.
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Fig.T: Internal forces 

in rupture-circle

We consider an earth wedge bounded hy a cir
cular rupture-line, a horizontal ground surface 
and a vertical wall (see Pig.T). For the weight 
of the earth wedge (unit weight y) and its moment 
about the middle point of the chord we have:

G = yk2(GYz + x sin 20) 3223

Mg = yk3 (M^xsin 0 + sin30) 3224

The dimensionless constants GYZ and MqX are 
indicated in the following Table 1.

Denoting by o’ and o” the normal stresses 
at the ends of the rupture-circle, we have for 
the stresses in this circle and their resultants 
the following equations, valid for the special 
case of frictionless earth (op = 0):

o” - yk sin 0 + ctc + o’ Mr = yk3MRXsin 0 + ck2MR 3350-59

V = yk2 (VYZ+ 7 sin 20) + ck (Vcxsin 0 + Vcycos 0) + ko* cos 0 3353

H = -§yk2sin20 + ck (Hcxsin 0 + Hcycos 0) + k& sin 0 3354

The dimensionless constants are indicated in the following Table 1.

Denoting by t’ and t” the oblique stresses (excl. c) at the ends of the rup
ture circle, we have for the stresses in this circle and their resultants the fol
lowing equations, valid for the general case of earth with internal friction:

t” = yk (tYXsin 0 + tyycos 0) + (t’ + ^-^) t1 - 

mR = Yk3(MYXsin 0 + M^ycos 0) + (t’+ —^) k2MY

V = yk2[vYZ+ VYXsln(20+2q>)] - ck cot <p cos 0

+ (t’+ ——) k T Vtxsin 0 + Vtycos 0~| 
sin op L J

H = yk2 [ Hyz+ HYycos(20+2<p)] - ck cot cp sin 0
+ (t’+ —-—) k l~Htxsin 0 + H^oos øl 

sin op L

sin <p 
t

3318

3335

3325

3326

The dimensionless constants are indicated in the following Tables 2-3.

The positive directions of the different stresses, forces and moments are 
indicated in Fig.T. <p and c should be assumed positive for passive pressure, ne
gative for active pressure in the circle, a is positive for a concave circle, 
negative for a convex one. Table 2 is valid when o and q> have identical signs, 
whereas Table 3 is valid when they have different signs.
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TABLE 1 : Functions of a for <p - 00

(Gyz and M^x are independent of qp)

+a +tC
+mrX

+mr

1 < O X +vcy
+a +t°

<

+Mr

+vYz 1 < o X

-mY*
G

+qYz +HCy +HCX -«YX +gYz +Hcy +HCX
+mY* -VYZ _yCX -v°y -VYz _yCX _vcy

-a -tc R -Mc -tC -MC
-MY* -qYz +HCy -HCX -ulx

mr -GYz +HCy -hcx

0 .0000 .0833 .0000 .0000 1.000 .0000 45 3.142 .0713 .5000 . 1427 .5708 1.571

1 .0698 .0833 .0117 .0029 .9998 .0349 46 3.211 .0707 .5099 . 1465 .5506 1.606
2 . 1396 .0833 . 0233 .0059 .9992 .0698 47 3.281 .0700 .5197 . 1503 .5299 1.641
3 .2094 .0833 .0349 .0088 .9982 . 1047 48 3.351 .0694 .5295 .1541 .5086 1.676
4 .2793 .0833 .0465 .0117 .9968 . 1396 49 3.421 .0687 .5392 . 1580 .4868 1.711
5 .3491 .0833 .0581 .0146 .9949 . 1745 50 3.491 .0680 .5487 . 1620 .4645 1.745

6 .4189 .0832 .0697 .0175 .9927 .2094 51 3.561 .0672 .5581 . 1660 .4416 1.780
7 .4887 .0832 .0813 .0204 .9901 .2443 52 3.630 .0665 .5674 . 1701 .4182 1.815
8 . 5585 .0831 .0929 .0233 .9870 .2793 53 3.700 .0657 .5766 . 1742 .3941 1.850
9 .6283 .0830 . 1045 .0263 .9835 .3142 54 3.770 .0648 .5858 . 1784 .3695 1.885

10 .6981 .0829 . 1161 .0292 .9797 .3491 55 3.840 .0639 .5948 . 1826 .3443 1.920

11 .7679 .0828 . 1277 .0322 .9754 .3840 56 3.910 .0630 . 6037 . 1869 .3185 1.955
12 .8378 . 0827 . 1392 . 0351 .9707 .4189 57 3. 980 .0621 .6124 . 1913 .2921 1.990
13 .9076 .0826 . 1508 .0381 .9656 .4538 58 4.049 .0611 .6210 . 1957 .2651 2.025
14 .9774 .0824 . 1623 .0410 .9601 .4887 59 4. 119 .0601 .6294 .2002 .2375 2.060
15 1.047 .0823 . 1738 .0440 .9542 .5236 60 4. 189 .0591 .6377 .2047 .2092 2.094

16 1. 117 .0821 . 1852 .0470 .9478 .5585 61 4. 259 .0580 .6459 .2094 . 1803 2.129
17 1. 187 .0819 . 1966 .0500 .9410 .5934 62 4.328 .0569 . 6539 . 2141 . 1507 2. 164
18 1.257 .0817 . 2080 .0531 .9338 .6283 63 4.398 .0557 .6618 .2189 . 1205 2.199
19 1.327 .0815 .2194 .0561 .9262 .6632 64 4.468 .0545 .6695 .2238 .0896 2.234
20 1.396 .0813 .2308 .0591 .9181 .6981 65 4.538 .0533 .6770 .2288 .0580 2.269

21 1.466 .0810 .2421 .0622 .9096 . 7330 66 4. 608 . 0520 .6844 . 2338 .0257 2.304
22 1.536 .0808 .2534 .0653 . 9007 .7680 67 4.678 .0507 .6916 . 2389 -.0073 2.339
23 1. 606 .0805 .2646 .0684 .8914 .8029 68 4.747 .0493 .6986 .2441 -.0410 2.374
24 1.676 .0803 .2759 .0715 .8816 .8378 69 4.817 .0479 . 7053 . 2494 -.0755 2.409
25 1.746 .0800 .2871 .0747 .8714 .8727 70 4.887 .0464 .7119 .2549 -.1107 2.443

26 1.815 .0797 .2983 .0778 .8608 .9076 71 4.957 .0448 . 7183 . 2604 -. 1467 2.478
27 1.885 .0794 .3094 .0810 .8497 .9425 72 5.027 .0432 .7245 .2661 -. 1834 2.513
28 1. 955 .0791 .3204 .0841 .8382 .9774 73 5.097 . 0415 . 7304 .2719 -.2209 2.548
29 2.025 .0787 .3314 .0873 .8262 1.012 74 5. 166 .0398 .7361 . 2778 -.2593 2.583
30 2. 094 .0784 .3424 .0906 .8138 1.047 75 5. 236 .0380 .7415 .2838 -. 2985 2.618

31 2. 164 .0780 .3533 .0939 .8009 1.082 76 5. 306 .0361 .7467 . 2899 -.3386 2.653
32 2.234 .0777 .3642 .0971 .7876 1. 117 77 5.376 .0342 .7516 .2962 -.3795 2.688
33 2.304 .0773 .3750 . 1004 .7738 1. 152 78 5.445 .0322 .7562 .3026 -.4213 2.723
34 2.374 .0769 .3858 . 1038 .7595 1. 187 79 5.515 .0301 .7606 .3091 -.4640 2.758
35 2.444 .0765 .3965 . 1072 .7448 1.222 80 5. 585 .0279 .7646 .3158 -.5076 2.793

36 2.513 .0761 .4072 . 1106 .7296 1.257 81 5.655 .0256 .7683 .3227 -.5522 2.828
37 2.583 .0757 .4178 . 1140 .7139 1. 292 82 5.725 .0232 .7717 .3297 -. 5977 2. 862
38 2.653 .0752 .4283 .1175 .6978 1.326 83 5.795 .0207 .7748 .3369 -.6442 2. 897
39 2.723 .0747 .4388 . 1210 .6811 1.361 84 5.864 .0181 .7775 .3443 -.6918 2.932
40 2. 793 .0742 .4492 . 1245 .6640 1. 396 85 5.934 .0154 .7798 .3519 -.7404 2.967

41 2.863 .0737 .4595 . 1281 .6463 1.431 86 6.004 .0126 .7818 . 3596 -.7901 3.002
42 2.932 .0731 .4697 . 1317 .6282 1.466 87 6. 074 .0097 .7834 .3675 -. 8408 3.037
43 3.002 .0725 .4799 . 1353 .6096 1. 501 88 6. 144 .0066 .7845 .3757 -.8927 3.072
44 3.072 .0719 .4900 . 1390 .5905 1.536 89 6.214 .0034 .7852 .3841 -.9457 3.107
45 3. 142 .0713 .5000 . 1427 .5708 1.571 90 6.283 .0000 .7854 .3927 -1.000 3.142
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TABLE 2a : Functions of a for qp = 30°

( Identical signs of a and <p)

(■up) +tY* +tYy +t4 :mrx l+Mf +VYZ
J

,+vYx +uyz
«/ _ytx j +yty <+<P)

+a ,-hyj
j+H +Hty j+Htx +a

(-<p>
nYx ♦Yy +t* .yYz

+VYX •+vtx •J +Vty (-<p)

-a -hYY
+HT

v/-Hty ,+HtX -a

0 .8660 .5000 1.000 .0625 .0361 .0000 . 0000 . 2500 . 2500 .5000 .8660 0

1 .8836 .5102 1.041 .0651 .0376 .0059 .0030 .2535 .2535 .5101 .8837 1
2 .9015 .5210 1.084 .0677 .0392 .0121 .0062 .2571 .2570 .5203 .9021 2
3 .9198 .5324 1.129 .0704 .0408 .0186 .0095 .2607 . 2606 .5305 .9211 3
4 .9385 .5443 1.175 .0731 .0425 .0253 .0129 .2644 .2642 .5408 .9408 4
5 .9576 .5568 1.224 .0758 .0443 .0323 .0165 .2681 .2679 .5511 .9611 5

6 .9771 .5698 1.274 .0786 .0461 .0395 . 0202 .2719 .2716 .5615 .9822 6
7 .9970 .5834 1.326 .0814 .0480 .0470 .0240 .2757 .2754 .5719 1. 004 7
8 1.018 .5977 1. 381 .0842 .0500 .0549 .0280 .2796 .2792 .5824 1. 026 8
9 1.039 .6126 1.438 .0870 .0521 .0630 .0321 .2835 .2831 .5929 1.050 9

10 1.060 .6283 1.497 .0899 .0543 .0715 .0364 .2876 .2870 .6033 1.074 10

11 1.081 .6447 1. 558 .0928 .0566 .0803 .0408 .2918 .2910 .6138 1.099 11
12 1.103 .6618 1.622 .0958 .0590 .0894 .0454 .2961 .2951 .6242 1. 125 12
13 1. 125 .6797 1. 689 .0989 .0615 . 0989 .0502 .3005 .2993 .6346 1. 152 13
14 1.148 .6985 1. 758 . 1020 .0642 . 1088 .0551 .3050 .3035 .6450 1. 179 14
15 1.171 .7181 1. 830 .1052 .0669 .1191 .0602 .3096 .3078 .6554 1.208 15

16 1.195 .7386 1.906 . 1084 .0698 . 1298 .0656 .3144 .3121 .6657 1.237 16
17 1.219 .7601 1.984 . 1117 .0728 . 1409 .0712 .3193 .3165 .6759 1.268 17
18 1.244 .7825 2.066 . 1150 .0759 . 1525 .0771 .3243 .3210 .6861 1.300 18
19 1.269 .8060 2. 151 . 1183 .0791 . 1645 .0832 .3295 .3255 .6961 1.333 19
20 1.295 .8306 2. 239 . 1217 .0825 . 1770 .0896 .3348 .3300 .7060 1.367 20

21 1.321 .8563 2. 331 . 1251 . 0860 . 1899 .0963 .3402 . 3346 .7158 1.402 21
22 1.347 .8831 2.427 . 1286 .0897 .2034 . 1032 .3458 .3392 .7254 1.439 22
23 1.374 .9112 2.527 . 1321 .0935 .2173 . 1104 . 3515 .3439 .7348 1.477 23
24 1.402 .9405 2. 631 . 1357 .0975 .2318 . 1180 .3574 .3486 .7440 1.516 24
25 1.430 .9710 2.739 . 1393 . 1017 .2468 . 1258 .3635 .3533 .7529 1. 556 25

26 1.459 1.003 2. 852 . 1430 . 1060 .2624 . 1340 .3697 .3580 . 7616 1.598 26
27 1.488 1.037 2.969 . 1467 . 1105 .2786 . 1425 .3762 .3627 .7700 1.642 27
28 1.517 1.072 3.091 . 1504 . 1152 .2954 . 1513 .3828 .3675 . 7781 1.687 28
29 1.547 1. 109 3.218 . 1542 . 1201 .3129 . 1605 . 3896 .3723 .7858 1.734 29
30 1.578 1. 147 3.350 . 1580 .1252 .3310 .1700 .3966 .3770 .7932 1. 782 30

31 1. 609 1. 187 3.488 . 1619 . 1305 .3498 . 1799 .4038 .3818 .8001 1.832 31
32 1.641 1.229 3.631 . 1658 . 1361 .3693 . 1902 .4113 . 3865 .8065 1.884 32
33 1.673 1.273 3.781 . 1697 . 1419 .3896 .2009 .4190 .3912 .8124 1.938 33
34 1.705 1.318 3.937 .1737 . 1479 .4106 .2121 .4269 .3958 .8178 1.994 34
35 1.738 1.365 4.099 .1777 . 1541 .4324 .2237 .4351 .4004 .8225 2.052 35

36 1.771 1.415 4.268 .1817 .1606 .4550 .2358 .4435 .4049 .8266 2. Ill 36
37 1.805 1.467 4.443 . 1857 . 1674 .4784 .2484 .4522 .4093 . 8300 2.173 37
38 1.840 1.521 4.626 . 1898 . 1744 .5027 .2614 .4612 .4137 .8326 2.237 38
39 1.875 1.578 4.816 . 1938 . 1817 .5279 .2750 .4705 .4180 .8343 2.304 39
40 1.910 1.637 5.014 . 1979 . 1894 .5540 .2891 .4801 .4222 .8352 2.373 40

41 1.945 1.699 5.220 .2020 .1973 .5811 .3038 .4901 .4263 .8351 2.444 41
42 1.981 1.764 5.435 .2061 .2056 .6092 .3190 .5004 .4302 .8340 2.518 42
43 2.017 1.831 5.658 .2102 .2142 .6383 .3348 .5111 .4339 .8318 2. 595 43
44 2.054 1.902 5.891 .2143 .2231 .6685 .3512 .5221 .4375 .8283 2. 674 44
45 2.091 1.976 6. 134 .2184 .2324 .6997 .3683 .5335 .4409 . 8236 2.756 45
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TABLE 2b : Functions of CL for <p = 30°
( Identical signs of a and <p )

(■Kp)
nyx +t*y +tfc +MT +VYZ

+VYX
+hyz

-VtX +vty (+<P)
+CL

+M£
-HYy +Hty +HtX +a

<-<p>
nY* . yy , ,t < jy t yYZ

+VYX
+hyz

+vtx +vty (-<p)

-a
-t +t -Mr +mR -Hty +Htx -a

45 2.091 1.976 6.134 .2184 .2324 .6997 .3683 .5335 .4409 .8236 2.756 45

46 2. 129 2.053 6.386 .2225 .2420 .7321 .3860 .5453 .4440 .8174 2.842 46
47 2.166 2.133 6.649 .2266 .2521 .7656 .4043 .5575 .4468 .8098 2.930 47
48 2.204 2.217 6.922 .2306 .2625 .8004 .4234 .5702 .4494 .8005 3.022 48
49 2.242 2.305 7.207 .2345 .2733 .8364 .4432 .5833 .4517 .7895 3. 117 49
50 2.280 2.396 7.503 .2385 .2846 .8737 .4637 .5970 .4536 .7767 3.215 50

51 2.318 2.491 7.812 .2424 .2963 .9124 .4850 .6112 .4552 .7619 3.317 51
52 2.356 2.591 8.133 .2462 .3085 .9525 .5072 .6259 .4564 .7451 3.422 52
53 2.394 2.695 8.468 .2500 .3211 .9940 .5302 .6412 .4572 .7260 3.531 53
54 2.432 2.804 8.816 .2538 .3342 1.037 .5540 .6570 .4575 .7046 3.644 54
55 2.470 2.918 9.178 .2573 .3478 1.081 .5787 .6735 .4573 .6806 3.761 55

56 2.508 3.036 9.556 .2607 .3619 1.127 .6043 .6906 .4566 .6540 3.883 56
57 2.545 3.160 9.950 .2641 .3766 1. 175 .6309 .7084 .4553 .6245 4.009 57
58 2.582 3.289 10.36 .2673 .3918 1.224 .6584 .7269 .4533 .5918 4. 140 58
59 2.618 3.424 10.79 .2704 .4076 1.275 .6869 .7461 .4506 .5558 4.275 59
60 2.654 3.565 11.23 .2734 .4239 1.327 .7164 .7662 .4472 .5163 4.415 60

61 2.689 3.712 11.69 .2761 .4409 1.382 .7470 .7871 .4430 .4731 4.560 61
62 2.724 3.866 12. 17 .2787 .4585 1.438 .7786 .8089 .4378 .4259 4.710 62
63 2.757 4.026 12.67 .2811 .4768 1.496 .8114 .8316 .4319 .3745 4.865 63
64 2.789 4.194 13.19 .2832 .4957 1.556 .8453 .8553 .4248 .3186 5.026 64
65 ?.820 4.369 13. 73 .2851 .5153 1.618 .8804 .8800 .4167 .2580 5.193 65

66 2.850 4. 551 14.30 .2867 .5357 1.682 .9167 . 9058 .4075 . 1922 5.366 66
67 2.878 4.742 14.89 .2881 .5568 1.748 .9542 .9326 .3970 . 1210 5.545 67
68 2.904 4.941 15.50 .2891 .5786 1.817 .9931 .9607 .3851 .0441 5.731 68
69 2.928 5.149 16. 14 .2898 .6012 1.888 1.033 .9901 .3719 -.0389 5.923 69
70 2.950 5.366 16.80 .2901 .6245 1.961 1.075 1.021 .3571 -.1285 6.122 70

71 2.969 5.592 17.49 .2900 .6487 2.036 1.118 1.053 .3407 -.2249 6.328 71
72 2.986 5.829 18.21 .2896 .6737 2.113 1. 162 1.086 .3225 -.3287 6.541 72
73 3.000 16.076 18.96 .2887 .6996 2.193 1.207 1.121 .3025 -.4403 6. 762 73
74 3.010 6.334 19.74 . 2873 .7263 2.275 1.254 1. 158 .2804 -.5602 6.990 74
75 3.017 6.604 20. 55 .2853 .7540 2.360 1.303 1.197 .2562 -.6888 7.227 75

76 3.020 6.885 21.40 .2828 . 7826 2.448 1.353 1.237 .2297 -.8268 7.472 76
77 3.019 7.179 22.28 .2797 .8122 2.539 1.405 1.279 .2008 -.9745 7.726 77
78 3.013 7.485 23.20 .2760 .8428 2.632 1.458 1.324 . 1693 -1.133 7.988 78
79 3.003 7.805 24.15 .2716 .8743 2.728 1.512 1.370 . 1350 -1.303 8.260 79
80 2.986 8.139 25. 14 . 2665 .9068 2.826 1.568 1.419 .0977 -1.484 8.541 80

81 2.963 8. 488 26. 17 .2607 .9403 2.927 1. 626 1.470 .0572 -1.678 8.832 81
82 2.934 8.853 27.25 .2540 .9747 3.031 1.685 1.524 .0134 -1.886 9. 133 82
83 2.897 9.233 28.37 .2464 1.010 3.138 1.746 1.581 -.0341 -2.107 9.445 83
84 2.853 9.631 29.54 .2380 1.047 3.247 1.809 1.640 -.0854 -2.344 9. 767 84
85 2. 800 10.05 30. 75 .2286 1.085 3.360 1.873 1.702 -. 1411 -2.597 10. 10 85

86 2.739 10.48 32.02 .2181 1.124 3.475 1.939 1.768 -.2007 -2.867 10.44 86
87 2.668 10.93 33.34 .2066 1. 164 3.593 2.006 1.837 -.2652 -3.155 10.80 87
88 2.586 11.40 34.71 . 1939 1.205 3.714 2.074 1.910 -.3347 -3.462 11. 17 88
89 2.493 11. 89 36. 14 . 1800 1. 247 3. 838 2.144 1.988 -.4097 -3. 789 11.55 89
90 2.389 12. 40 37.62 . 1649 1.290 3.964 2.216 2. 069 -.4899 -4. 138 11.95 90
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TABLE 3a : Functions of a for <p = 30°
( Different signs of a and <p )

(-cp)
+tyx -tw +tt ax -mFMr ut +VYZ

+VYX
+hyz

+vtx +Vty (-<P)

+a
‘“r -HYy -Hty +HtX +a

(+<p>
+tY* +tyy +tl < A VYZ

+vYX
+hyz

-vtx +vty
(+<p)

-a -HYy +Hty +HtX -a

0 .8660 .5000 1. 000 .0625 .0361 .0000 .0000 .2500 .2500 . 5000 . 8660 0

1 .8488 .4902 .9605 .0599 .0347 .0057 .0029 .2466 .2466 .4899 .8488 1
2 .8319 .4808 .9225 .0574 .0333 .0112 .0057 .2432 .2432 .4799 .8322 2
3 .8153 .4719 . 8861 .0549 .0320 .0164 . 0084 .2399 .2400 .4700 .8162 3
4 .7991 .4634 .8511 .0525 .0307 .0214 .0109 . 2367 .2368 .4602 .8007 4
5 .7831 .4553 .8175 .0502 .0295 .0262 .0133 .2336 .2337 .4505 .7857 5

6 .7675 .4475 .7852 .0479 .0284 .0309 .0156 .2306 .2308 . 4408 .7712 6
7 .7522 .4401 .7542 .0457 .0273 .0354 .0178 .2277 .2280 .4313 .7571 7
8 .7371 .4330 .7244 .0435 .0263 .0397 .0199 .2248 .2252 .4218 .7435 8
9 .7223 .4263 . 6958 .0413 .0253 .0438 .0219 .2220 .2225 .4124 .7303 9

10 .7079 .4199 .6683 .0392 .0243 .0478 .0239 .2192 .2198 .4031 . 7176 10

11 .6938 .4138 .6419 .0371 .0234 .0516 .0258 .2165 .2171 .3939 .7053 11
12 .6799 .4080 .6165 .0350 .0225 .0552 .0276 .2138 .2145 .3848 .6933 12
13 .6663 .4025 .5921 .0329 .0217 .0586 .0294 .2112 .2120 .3758 . 6817 13
14 .6530 .3973 .5687 .0309 .0209 . 0619 .0311 .2086 .2095 .3669 .6705 14
15 .6399 .3923 .5463 .0289 .0202 .0651 .0328 .2060 .2071 .3581 .6597 15

16 .6271 .3876 .5247 .0269 .0195 .0681 .0344 .2035 .2048 .3493 .6492 16
17 .6145 .3831 .5040 .0250 .0188 .0710 .0360 .2010 .2025 .3407 .6390 17
18 .6022 .3788 .4841 .0231 .0182 .0738 .0375 . 1985 .2003 .3321 .6291 18
19 .5901 .3747 .4650 .0212 .0175 .0765 .0389 . 1960 . 1981 .3236 .6195 19
20 .5782 .3709 .4466 .0194 .0169 .0790 .0403 . 1936 . 1960 .3153 .6103 20

21 .5665 .3673 .4289 .0175 .0163 .0815 .0416 . 1912 . 1940 .3071 .6013 21
22 .5551 .3638 .4120 .0157 .0157 .0838 . 0429 . 1889 . 1920 .2989 . 5926 22
23 .5439 .3606 .3957 .0139 .0152 . 0860 .0442 . 1866 . 1901 .2908 .5842 23
24 .5329 .3575 .3801 .0122 .0147 .0881 .0454 . 1843 . 1882 .2828 .5760 24
25 .5221 .3546 .3651 .0105 .0142 .0901 .0466 . 1820 . 1864 .2749 .5681 25

26 .5115 .3518 .3507 .0088 .0137 .0920 . 0477 .1798 . 1847 .2671 .5604 26
27 . 5011 .3492 .3368 .0071 .0132 .0938 .0488 . 1776 . 1830 .2594 .5529 27
28 .4908 .3467 .3235 . 0055 .0128 .0956 .0498 . 1754 . 1814 .2517 .5457 28
29 .4808 . 3444 .3107 .0038 .0124 .0972 .0509 . 1732 . 1798 . 2442 .5387 29
30 .4709 .3422 .2984 .0022 .0120 .0988 .0519 . 1711 . 1783 .2367 .5318 30

31 .4612 .3401 .2866 .0006 .0116 .1003 .0529 . 1690 . 1768 .2293 .5252 31
32 .4517 .3382 .2753 -.0010 .0112 . 1017 . 0539 . 1669 . 1754 .2220 .5187 32
33 .4423 .3364 . 2644 -.0026 .0108 . 1030 .0548 . 1648 . 1740 .2148 .5124 33
34 .4331 .3347 .2540 -.0041 .0105 . 1043 .0557 . 1628 . 1727 .2077 .5064 34
35 .4240 .3331 .2439 -.0057 .0101 . 1055 .0566 . 1607 . 1714 .2007 .5005 35

36 .4151 .3316 .2343 -.0072 .0098 . 1066 .0574 . 1587 . 1702 .1937 .4948 36
37 .4063 .3302 .2251 -.0087 . 0094 . 1077 .0583 .1567 .1691 . 1868 .4892 37
38 .3977 .3289 .2162 -.0102 .0091 . 1087 .0591 . 1547 . 1680 . 1800 .4837 38
39 .3892 .3277 . 2076 -.0117 . 0088 . 1096 .0600 . 1527 . 1670 .1733 .4784 39
40 .3809 .3265 . 1994 -.0131 .0085 . 1105 .0608 . 1508 . 1660 . 1666 .4732 40

41 .3727 .3255 . 1915 -.0146 .0082 . 1113 .0616 . 1488 . 1650 . 1600 .4682 41
42 .3646 .3245 . 1839 -.0160 .0079 . 1121 .0624 . 1469 . 1641 . 1535 .4633 42
43 .3566 . 3236 . 1766 -.0174 .0076 . 1128 .0632 . 1450 . 1633 . 1470 .4585 43
44 .3487 . 3228 . 1697 -.0188 .0073 . 1135 .0640 . 1431 . 1625 . 1406 .4539 44
45 .3409 .3221 . 1630 -.0202 .0070 .1141 .0648 . 1412 . 1618 . 1343 .4494 45
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TABLE 3b : Functions of a for <J> = 30°
( Different signs of a and <p )

(-SP)
+tY* .tyy +mT -Myy < +yYz

+yYx
+hyz

+ytX +v^y (-<P)

+a
mr

-HYy -Hty +Htx +a

(+4>)
+trx +(.yy +tt < ut -Vyz

+vyx
+hyz

_ytx +vty <+<?»

-at'
-Mr

-HYy +HtX -a

45 .3409 . 3221 . 1630 -.0202 .0070 .1141 .0648 . 1412 . 1618 . 1343 .4494 45

46 .3333 .3214 . 1566 -.0216 .0068 . 1146 .0655 . 1393 . 1611 . 1280 .4450 46
47 .3258 .3208 . 1504 -.0230 .0065 .1151 .0663 . 1374 . 1604 . 1218 .4407 47
48 .3184 .3202 . 1445 -.0243 .0062 . 1156 .0671 . 1356 . 1598 . 1156 .4365 48
49 .3111 .3197 .1388 -.0257 .0059 . 1160 .0679 . 1337 . 1593 . 1095 .4324 49
50 .3039 .3193 . 1333 -.0270 .0056 . 1164 .0686 . 1318 . 1588 . 1035 .4284 50

51 .2968 .3189 . 1280 -.0284 .0053 .1168 .0694 . 1299 . 1583 .0975 .4245 51
52 .2897 .3186 . 1229 -.0297 .0050 . 1171 .0701 . 1281 . 1579 .0916 .4207 52
53 .2828 .3183 .1180 -.0311 .0047 . 1174 .0709 . 1262 . 1576 .0857 .4170 53
54 .2759 .3181 . 1134 -.0324 .0044 .1176 .0717 . 1244 . 1573 .0799 .4134 54
55 .2692 .3179 . 1090 -.0338 .0041 . 1178 .0725 . 1226 . 1571 .0741 .4099 55

56 .2625 .3177 . 1047 -.0351 .0038 . 1180 .0733 . 1208 . 1569 .0684 .4064 56
57 .2559 .3176 . 1006 -.0364 .0035 . 1181 .0741 . 1190 . 1568 .0627 .4030 57
58 .2493 .3175 .0966 -.0377 .0032 . 1181 .0749 . 1172 .1567 .0571 .3997 58
59 .2428 .3175 .0928 -.0390 .0029 .1182 .0757 . 1154 .1566 .0515 .3964 59
60 .2364 .3175 .0891 -.0404 .0025 .1182 .0765 . 1135 . 1566 .0460 .3932 60

61 .2301 .3175 . 0856 -.0417 . 0022 . 1182 . 0773 . 1117 .1567 .0405 .3901 61
62 .2238 .3176 .0822 -.0431 .0018 . 1181 .0782 .. 1099 . 1568 .0350 .3870 62
63 .2176 .3177 . 0789 -.0444 .0014 . 1181 .0791 . 1081 .1570 .0296 .3840 63
64 .2114 .3179 .0758 -.0458 .0010 . 1180 .0800 . 1062 . 1572 .0242 .3811 64
65 .2053 .3181 . 0728 -.0471 .0006 . 1178 .0809 . 1044 . 1575 .0188 .3782 65

66 .1992 .3183 .0699 -.0485 .0002 . 1176 .0819 . 1025 . 1578 .0135 .3753 66
67 . 1932 .3185 .0671 -.0499 -.0002 . 1174 .0828 . 1007 . 1582 .0082 .3725 67
68 . 1873 .3188 .0645 -.0513 -. 0007 . 1172 .0838 .0988 .1587 .0029 .3697 68
69 . 1814 .3191 .0620 -.0527 -.0012 .1170 .0848 .0970 . 1592 -.0024 .3670 69
70 . 1756 .3194 .0595 -.0541 -.0017 . 1167 .0858 . 0951 . 1598 - .0077 .3644 70

71 . 1698 .3197 .0572 -.0555 -.0022 . 1164 .0868 .0933 . 1605 -.0129 .3618 71
72 .1640 .3201 .0549 -.0569 -.0028 .1160 .0879 .0914 . 1612 -.0181 .3592 72
73 .1582 .3205 .0527 -.0583 -.0033 . 1157 .0890 .0895 .1620 -.0233 .3566 73
74 . 1525 .3209 .0506 -.0598 -.0039 . 1153 .0901 .0876 ’. 1628 -.0284 .3541 74
75 . 1468 .3213 .0486 -.0613 -.0045 . 1149 .0913 .0857 .1637 -.0335 .3516 75

76 . 1411 .3218 .0467 -.0628 -.0052 . 1144 .0925 .0838 .1646 -.0386 .3492 76
77 . 1354 .3222 .0449 -.0643 -.0059 . 1140 .0937 .0819 .1656 -.0437 .3468 77
78 . 1298 .3227 .0431 -.0658 -. 0066 . 1135 .0950 .0799 .1667 -.0489 .3444 78
79 . 1242 .3232 .0414 -.0674 -. 0073 . 1130 .0963 .0779 .1679 -.0540 .3420 79
80 . 1187 .3237 .0398 -.0690 -.0081 . 1124 .0977 .0759 . 1691 -. 0590 .3397 80

81 . 1132 .3242 .0382 -.0706 -.0089 . 1118 .0991 .0739 . 1705 -.0641 .3374 81
82 . 1077 .3248 .0367 -.0723 -.0098 . 1112 . 1005 .0719 . 1719 -.0692 .3352 82
83 . 1022 .3254 .0352 -.0740 -.0107 . 1106 . 1020 .0699 . 1734 -.0743 .3329 83
84 .0967 .3260 .0338 -.0757 -.0116 .1099 . 1035 .0678 . 1750 -.0794 .3307 84
85 .0912 .3266 .0325 -.0775 -.0126 .1092 . 1051 .0657 .1767 -.0845 .3285 85

86 .0856 . 3273 .0312 -.0793 -.0136 . 1085 . 1067 . 0636 . 1785 -.0895 .3263 86
87 .0801 .3279 . 0300 -.0811 -.0147 . 1078 . 1084 .0615 . 1804 -.0946 .3241 87
88 .0745 .3286 .0288 -.0830 -.0159 . 1070 . 1102 . 0594 . 1823 -.0997 .3219 88
89 .0690 .3293 .0277 -.0849 -.0171 . 1062 . 1120 .0572 . 1844 -.1048 .3197 89
90 .0635 .3300 .0266 -.0869 -.0184 .1054 . 1139 .0550 . 1865 -.1100 .3175 90



EARTH PRESSURE GRAPHS

X

— E

We consider the case of a horizontal 
ground surface and a vertical wall rotating 
about a point located at a height x = £h 
above the foot of the wall (see Pig.G). The 
rotation is called positive, when it increases 
the angle between wall and surface, and nega
tive when it decreases this angle. The follow
ing general formulae are valid, and in these 
c should always be assumed positive:

E * -§yh2X + php + chx 6118

Ez * |yh3\Ti + ph2p0 + ch2xC 6119

P = |yh5X tan 6Y

Fig.G: Earth pressure diagram + (php + chx) tan 6P + ah 6120

e^ 3 ydXx + ppx + cxx ey 3 ydXy + ppy + cxy y 3 wh 6121-23

In the special case of frictionless earth (tp = 0) the dimensionless con
stants x, C, a : c, u°, xx and xy can be taken from the following Graphs 1-6, 
corresponding to a given 5 3 x : h. Further, we have in this case:

X = Xx= Xy= p=px=:py=l 0 = ■$

In the other special case of a friction angle of 30° (<p 3 30°) the dimen
sionless constants p, 0, tan 61*, X, r>, tan 6y, u, Xx, Xy, px and can be 
taken direct from the following Graphs 7-18. The constants x, £, a : c, xx and 
xy cannot be taken from Graphs 1-6 (which are valid for cp = 0 only) but must be 
calculated by means of the following formulae, the first of which is also valid 
with superscripts x or y:

x 3 (p - 1) cot |<p| C 3 (pØ - i) : (p - 1) a : c 3 cot|<p|tan 6p 6112-15

In the case of friction angles other than 0° or 30° we find first p3o, tan 
630, X30, tan 6so, Xfo, X?o. Pso and p^0 for <p 3 30° from Graphs 7, 10-11, 14 and 
16-18. Next, we find the values p, X, Xx, Xy, px and by means of Graph 19 
(smooth wall) or 20 (rough wall). Further, the constants u. i\, 0, tan 6P and 
tan are found from the following equations:

u 3 1 X - Xy
Xx- xy

2+ aU) X - xy

e _ j, i p - py- « + 2(»j tan 63V3" tan |cp| tan 630

5904-05

5906-07

Finally, the remaining constants x, C, a : c, xx and xy are calculated by 
means of the above formulae 6112-15.

1
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ENGLISH SUMMARY

Hie present work contains, in addition to a short description of the known methods for 
earth pressure calculation, the principles of a new general calculation method, as well as a 
number of applications to practical earth pressure and stability problems (with numerical 
examples).

The fundamental basis of the new method is a connection, established by the author, be
tween two known methods, which may be termed the extreme-method and the equilibrium-method re
spectively. In both these methods a state of rupture in the earth is considered, and an earth 
wedge is investigated, which is bounded by the ground surface, the wall and a rupture-line 
through the lowest point of the wall.

In the extreme-method a statical condition of equilibrium for the said earth wedge is set 
up in such a way, that it does not contain the unknown internal forces in the rupture-line. The 
earth pressure on the wall is then determined by an extreme-condition which states that the act
ive earth pressure should be a maximum, or the passive a minimum. This method necessitates the 
assumption that the rupture-line is a logarithmic spiral (Rendulic), in special cases a circle 
(Fellenius) or a straight line (Coulomb).

In the equilibrium-method no extreme-condition is employed, but the earth pressure is 
determined by means of all three statical conditions of equilibrium for the above-mentioned 
earth wedge. This presumes, of course, that the internal forces in the rupture-line are known, 
which is effected by means of the so-called Kbtter’s Equation in connection with a boundary con
dition at the ground surface. However, so far, it has only been possible to indicate this bound
ary condition in special cases, viz., when the rupture-line meets the ground surface at a cer
tain angle, or when the ground surface is unloaded and the earth cohesionless (Ohde).

In order to judge the applicability and limitations of these methods it is necessary to 
first consider the figures of rupture which may develop in the earth. The author distinguishes 
here between the following three different types:

1) Zone-ruptures, in which the stresses at any point within a certain area satisfy the 
condition of failure.

2) Line-ruptures, in which only the stresses at the points on a certain curve satisfy 
the condition of failure.

3) Composite ruptures, which consist of more than one rupture-zone or rupture-line.
Many rupture-figures consist thus exclusively or partly of a single rupture-line separat

ing two zones, in which the state of rupture is not attained. Disregarding the elastic deforma
tions, and assuming incompressibility, such a single rupture-line must, for kinematical reasons, 
be a circle, the centre of which is located on a normal to the wall through its rotation centra 
Consequently, this rupture-figure cannot usually be dealt with by means of the extreme-method, 
which requires the use of logarithmic spirals, and the indefinite boundary condition excludes 
normally the employment of the equilibrium-method.

The author has succeeded in overcoming these difficulties by proving that the two methods 
will give identical results, when a logarithmic spiral is used as a rupture-line in both, and 
when a certain boundary condition is used in the equilibrium-method. This boundary condition is 
namely also, as a very good approximation, applicable to the circular rupture-line which must be 
used in the case of a given rotation centre. In this way the author has made possible a general 
application of the equilibrium-method.

For the design or calculation of a certain earth retaining structure it is necessary to 
determine first the type of movement to be performed by the structure in the state of failure. 
Disregarding the elastic deformations, the structure must either move as one rigid body, or as 
a finite number of rigid parts connected by yield hinges. A further investigation seems to show
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that, to a certain degree, it is possible to choose freely the type of movement on which to 
base the calculation.

Corresponding to the chosen type of movement for the structure such figures of rupture 
in the adjacent earth masses are then investigated, which imply movements and deformations of 
the earth compatible with those of the structure. The corresponding earth pressures on the 
structure are determined by means of the equilibrium-method in its general form. If more than 
one figure of rupture satisfies the kinematical conditions, the design of the structure must be 
based on the rupture-figure, for which the work done by the earth pressure (acting upon the 
earth) is a minimum.

Finally, the dimensions of the structure are so determined that the statical equilibrium 
conditions for the structure proper are satisfied and the allowable stresses not exceeded. As 
in the whole calculation the state of failure is considered, it is necessary to divide the actu
al shear strengths of the soils by suitable safety factors before carrying out the calculation.
As corresponding "allowable” stresses are used the ultimate strengths of the structural mate
rials after division by other safety factors.

The author has applied the outlined method to the majority of plane earth pressure prob
lems encountered in practice, viz., retaining walls, anchor slabs, free sheet walls, fixed sheet 
walls, braced walls, double sheet walls and cellular cofferdams. Incidentally, the method is 
also applicable to stability and foundation problems.

The proposed method is applicable to earth with internal friction or cohesion or both, 
to walls with any inclination and roughness, and to ground surfaces with any slope and surcharge. 
The effects of hydrostatic or hydrodynamic water pressures can be taken into account, at least 
approximately, and the same applies also in the case of stratified earth.

The practical calculations are facilitated considerably by the use of the tables and 
graphs in the Appendix. The tables enable an easy and quick calculation of the internal forces 
in a rupture-circle, but only for a friction angle of either 0° or 30°. By means of the graphs 
it is possible to easily determine the earth pressure on a vertical wall (horizontal ground sur
face) for any friction angle, and for any given location of the rotation centre for the wall.

Due to the wide range of application of the new method the author has only been able to 
check its results against practical experience in a few instances. However, the connection 
established between the new method and the extreme-method should be a safeguard against serious 
errors, as it is a well-known fact that extreme-methods (e. g. the so-called "(p=0”-analysis) 
will produce very reliable results when used properly.

Further, it may be mentioned that a stability calculation of a cellular cofferdam on 
rock, by means of the new method, leads to very nearly the same dimensions as those most common
ly used in practice. It is also of interest to note that, with suitable safety factors, the 
author’s design methods for anchored sheet walls in sand may lead to virtually the same results 
as the so-called Danish Rules, which have proved their suitability in practice for a considerable 
number of years.

Consequently, provided that the author’s methods are used with appropriate caution, it 
is to be expected that they will result in sufficiently safe and rather economical structures.



DANSK RESUIÉ

Den foreliggende afhandling indeholder, foruden en kort gennemgang af de allerede kendte 
metoder til jordtryks-beregning, principperne for en ny generel beregningsmetode, samt en rakke 
anvendelser paa praktiske Jordtryks- og stabilitetsproblemer (med taleksempier).

Grundlaget for den ny metode er en af forfatteren opdaget sammenhång mellem to kendte 
metoder, der kan betegnes som henholdsvis extrem-metoden og ligevagts-metoden. Ved begge disse 
metoder betragter man en brudtilstand i jorden og undersøger et jordlegeme, der er begrånset af 
jordoverfladen, vaggen og en brudlinie gennem vaggens nederste punkt.

Ved extrem-metoden opstiller man for det navnte jordlegeme en statisk ligevågtsbetingelse 
af en saadan art, at den ikke indeholder de ubekendte indre kråfter i brudlinien. Derefter be
stemmes jordtrykket paa våggen ved en extrem-betingelse, som udtrykker, at det aktive jordtryk 
skal våre et maximum, eller det passive et minimum. Denne metode kraver, at brudlinien antages 
at vare en logaritmisk spiral (Rendulic), i specielle tilfalde en cirkel (Fellenius) eller en 
ret linie (Coulomb).

Ved ligevågts-metoden anvendes ikke nogen extrem-betingelse, men jordtrykket bestemmes 
ved hjalp af alle tre statiske ligevågtsbetingelser for det ovenfor nåvnte jordlegeme. Dette 
forudsåtter naturligvis, at de indre kråfter i brudlinien kendes, hvilket opnaas ved hjalp af 
den saakaldte Kotters Ligning i forbindelse med en grånsebetingelse ved jordoverfladen. Imidler
tid har denne grånsebetingelse hidtil kun kunnet angives i specielle tilfalde, nemlig naar brud- 
linien skarer jordoverfladen under en bestemt vinkel, eller naar jordoverfladen er ubelastet og 
jorden kohåsionsløs (Ohde).

For at kunne bedømme disse metoders anvendelighed og begrånsning maa man først betragte 
de brudfigurer, der kan opstaa i jorden. Forfatteren skelner her mellem følgende tre forskellige 
typer:

1) Zone-brud, ved hvilke spåndingerne i ethvert punkt inden for et bestemt omraade til
fredsstiller brudbetingelsen.

2) Linie-brud, ved hvilke kun spåndingerne i punkterne paa en bestemt kurve tilfredsstil
ler brudbetingelsen.

3) Kombinerede brud, der bestaar af mere end een brudzone eller brudlinie.

Mange brudfigurer bestaar saaledes helt eller delvis af en enkelt brudlinie, som adskiller 
to omraader, der ikke befinder sig i brudtilstanden. Naar man ser bort fra elastiske deforma
tioner. og desuden antager volumenkonstans, maa en saadan enkelt brudlinie af kinematiske grunde 
våre en cirkel, hvis centrum ligger paa en normal til våggen gennem dennes rotationscentrum.
Denne brudfigur kan derfor i almindelighed ikke behandles ved hjalp af extrem-metoden, der for- 
udsåtter anvendelse af logaritmiske spiraler, ligesom den ubestemte grånsebetingelse normalt 
udelukker anvendelsen af ligevågts-metoden.

Disse vanskeligheder er det lykkedes forfatteren at overvinde ved at bevise, at de to 
metoder vil give identiske resultater, naar der i dem begge anvendes en logaritmisk spiral som 
brudlinie, og naar der anvendes en sårlig grånsebetingelse i ligevågts-metoden. Denne grånsebe
tingelse kan nemlig med god tilnårmelse ogsaa anvendes paa den cirkulåre brudlinie, der maa an
vendes i tilfalde af et givet rotationscentrim. Paa denne maade har forfatteren muliggjort en 
generel anvendelse af ligevågtsmetoden.

Ved dimensionering eller beregning af en bestemt konstruktion, paavirket af jordtryk, 
maa man først fastslaa arten af den bevågelse, som konstruktionen foretager i brudstadiet. Idet 
man ser bort fra de elastiske deformationer, maa konstruktionen enten bevåge sig som eet stift 
legeme, eller som et endeligt antal stive dele, forbundet ved flyde-chamierer. En nårmere 
undersøgelse synes at vise, at man til en vis grad frit kan vålge, hvilken art bevågelse man vil 
basere sin beregning paa.
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Svarende til den valgte art bevagelse af konstruktionen maa man demast undersøge saa- 
danne brudfigurer i de tilstødende jordmasser, som medfører bevagelser og deformationer, der 
passer sammen med konstruktionens. De hertil svarende jordtryk paa konstruktionen bestemmes ved 
hj&lp af ligevagts-metoden i dens generelle form. Hvis mere end een brudfigur tilfredsstiller 
de kinematiske betingelser, skal dimensioneringen af konstruktionen baseres paa den brudfigur, 
for hvilken det af jordtrykket (virkende paa jorden) udførte arbejde er et minimum.

Til sidst bestemes konstruktionens dimensioner paa en saadan maade, at de statiske lige- 
vågtsbetingelser for selve konstruktionen er opfyldt og de tilladelige spandinger ikke er over
skredet. Da man i hele beregningen betragter brudstadiet, er det nødvendigt at dividere jord
arternes forskydningsstyrker med passende sikkerhedsfaktorer, inden beregningen udføres. Som 
tilsvarende "tilladelige” spandinger anvendes brudstyrkeme for byggematerialerne efter division 
med andre sikkerhedsfaktorer.

Den skitserede metode er af forfatteren blevet anvendt paa hovedparten af de plane jord
tryksproblemer, der forekommer i praksis, nemlig støttemure, ankerplader, frie spunsvagge, for
ankrede spunsvågge, indspåndte spunsvagge, afstivede byggegrube-vagge, dobbelte spunsvagge og 
cellefangedamninger. Metoden kan iøvrigt ogsaa anvendes paa problemer vedrørende stabilitet og 
fundamentstryk.

Den foreslaaede metode kan anvendes paa jord med indre friktion eller koh&sion eller 
begge dele. Den kan anvendes paa vågge af enhver haldning og ruhed, og paa jordoverflader med 
enhver h&ldning og belastning. Virkningerne af hydrostatiske eller hydrodynamiske vandtryk kan 
tages i betragtning, i hvert fald med tilnarmelse, og det samme galder tilfaldet lagdelt jord.

De praktiske beregninger lettes i betydelig grad ved anvendelse af tabellerne og dia
grammerne i bogens appendix. Tabellerne muliggør en let og hurtig beregning af de indre kråfter 
i en brudcirkel, men kun for en friktionsvinkel paa enten 0° eller 30°. Ved hj&lp af diagrammerne 
kan man paa en meget simpel maade bestemme jordtrykket paa en lodret vag (vandret jordoverflade) 
for enhver friktionsvinkel, og for enhver given beliggenhed af vaggens rotationscentrum.

Paa grund af den ny metodes omfattende anvendelsesomraade har forfatteren kun varet i 
stand til at sammenligne dens resultater med praktiske erfaringer i nogle faa tilf&lde. Imidler
tid skulde den forbindelse, der er etableret mellem den ny metode og extrem-metoden vare en ga
ranti mod vasentlige fejl, idet det er et velkendt faktum, at extrem-metoder (f. eks. den saa- 
kaldte "cp=0”-analyse) vil føre til meget paalidelige resultater, naar de anvendes rigtigt.

Endvidere kan det navnes, at en stabilitetsberegning for en cellefangedamning paa klippe 
ved hj&lp af den ny metode fører til meget nar samme dimensioner som de, der almindeligvis an
vendes i praksis. Det er ogsaa af interesse at bemarke, at forfatterens dimensioneringsmetoder 
for forankrede spunsvagge i sand med passende sikkerhedsfaktorer kan føre til nas ten samme re
sultater som de danske Vandbygnings-Normer, der har vist deres velegnethed i praksis i en lang 
aarråkke.

Forudsat, at forfatterens metoder anvendes med en passende forsigtighed, kan man derfor 
forvente, at de vil føre til tilstr&kkeligt solide og ganske økonomiske konstruktioner.
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In the following Index, most of the subjects dealt with in this book are listed. However, 
such subjects which occur repeatedly on a very large number of pages are not listed here. This 
applies, for example, to subjects such as "active earth pressures”, "friction angles”, "smooth 
walls”, “ zone-ruptures”, "equilibrium-calculations”, “boundary conditions”, " earth pressure 
distribution”, etc. Such subjects of a general nature are best located from the Table of Con
tents (pgs.5-9).
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