An investigation on load re-distribution and 1D vs 3D strategies for

cyclic degradation of monopiles based on cyclic soil contour diagrams

Majid Goodarzi

mdgi@cowi.com

Danish Geotechnical Society Seminar 2024-09-24

Cyclic degradation Input

- Site Specific storm event
- Integrated Load Analysis
- Markov Matrix of the cyclic load at mudline Location specific
- Site Specific Soil Data
- Cyclic soil contour diagram
 - Simpler compared to advanced CM
 - Mentioned in DNV standard

OWI

Cyclic degradation based on soil cyclic contour diagrams

- · Mainly developed for gravity-based and suction anchor
- The whole foundation could be assumed to be represented with one point

3

 The storm loading will be normalized and assumed to be one to one in the contour diagram: "assuming that the shear stresses are proportional to the loads"

(plots from Andersen 2015)

Cyclic degradation for pile foundation

For pile foundation two aspect are critical:

- Conversion of mudline load to CSR at surrounding soil and consequently in cyclic soil contour diagrams
- Redistributing the load across the pile length

From soil-pile interaction to stress-Strain curve and vice versa

- UDCAM/PDCAM (Neq calculation at each element)
- Simplified UDCAM/PDCAM (Neq calculation at each layer)
 - Analytical solutions (Zhang et al. 2016)
 - 3D FEM (Jostad et. al., 2023; Ragni et al. 2023)

Load redistribution and strain/pore pressure accumulation

- Applying the storm event parcel by parcel in a 1D-beam Winkler model to allow for the redistribution of soil pressures and load-transfer down the pile (Zhang et al 2016).
 - Each step based on previous estimate of N
 - One iteration to improve it

Final pile response

Load redistribution and strain/pore pressure accumulation

- Applying the whole storm at once in several iteration (Jostad et. al., 2023; Ragni et al. 2023)
 - With scaling the CSR to failure
 - Without scaling the CSR to failure

- Even the Simplified UDCAM in 3D can be time-consuming for industry practice due to iterations needed for redistribution and number of load parcels
- Is it possible to combined the 3D FE and 1D beam models ?
- We can calibrate Np factor, and it is independent

- Even the Simplified UDCAM in 3D can be time-consuming for industry practice due to iterations needed for redistribution and number of load parcels
- Is it possible to combined the 3D FE and 1D beam models ?
- · We can calibrate Np factor, and it is independent from Su
- In general, in two-way cyclic contour diagrams, the stressstrain curves can be calibrated with one value of strain to failure using NGI-ADP model

Table 3. Stress-strain curve fitting parameters

$(G_0/p_0')^*$	$(\gamma_{psf})^{*a}$ (%)	$(au_0/p_0')^{*\mathrm{a}}$	$\left(\tau_{\rm cy}/p_0^{\prime}\right)_{\rm max}N=1$	$\left(\tau_{\rm cy}/p_0'\right)_{\rm max}N=3$	$\left(\tau_{\rm cy}/p_0'\right)_{\rm max}N=10$	$\left(\tau_{\rm cy}/p_0'\right)_{\rm max}N=30$
500	21	0	4.4	3.6	2.2	1.5

(Table from Jostad et. al., 2023)

^aThe values are the same across N = 1, 3, 10, 30.

- Even the Simplified UDCAM in 3D can be time-consuming for industry practice due to iterations needed for redistribution and number of load parcels
- Is it possible to combined the 3D FE and 1D beam models ?
- We can calibrate Np factor, and it is independent from Su
- In general, in two-way cyclic contour diagrams, the stress-strain curves can be • calibrated with one value of strain to failure using NGI-ADP model
- Can be translated to PISA springs using Su reduction or P-multiplier •

- 3D FE model calibrated at Neq=1 Drammen Clay OCR=4
- Pile diameter = 9.5 m
- Selected peak load:

H=20 MN with 35 m of lever arm

• 1D PISA framework model calibrated on two pile lengths 25 and 30 m

Ν	F/Fmax
2500	0.3
1500	0.45
1000	0.55
500	0.65
250	0.75
100	0.85
20	0.925
1	1

500	0.40	
000	0.55	
500	0.65	
250	0.75	
100	0.85	
20	0.925	
1	1	

- 3D FE and 1D beam model were run
- can approximately produce the same results with only Su (P_bar) multiplier
- Convergency can be easily achieved in simple model but not in more layered models
- The proposed method can be done with different variabilities
 - Several 3D FE run with Neq=1, 10, 100
 - PISA parameters (normalized displacement and *n*) as a function of N

0.9

0.8

- 7.0 - 6.0 - 6.0 - 6.0

0.3

0.2

0.1

Iteration No

10² Z

10¹

Different load redistribution methods

- Applying the storm event parcel by parcel (Zhang et al 2016)
- Applying the whole storm at once in several iteration (Jostad et. al., 2023; Ragni et al. 2023)
 - Without scaling the CSR to failure
 - With scaling the CSR to failure

Summary and conclusion

- Simplified UDCAM/PDCAM is still relatively time-consuming for industry practice
- Conic function of PISA framework with 1D beam mode can be good solution by calibrating the PISA normalized parameters as a function of N.
- With a use of contour diagram for 2-way cyclic loading a simple Su reduction factor on PISA springs based on maximum CSR at each N is enough.
- Stress redistributions methods available in the literatures were compared:
 - Parcel by parcel approach with no convergency check is fast but could have some noises in complex models
 - Full storm with iterative solver is more robust but can increase the run-time
 - Scaling the load for each layer would lead to a conservative design in our simple example at least 1.5 m longer pile