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Phenomena to be modelled during cycling

A Monotonic response T o — — — Y
Load -
Hysteresis _—1A4/ """ f " TS -
/ﬁatcheting>
(slows down) >
0 B D F Displacement

Changes of stiffness
and “damping”




Typical “scaling” design methods for cycling (unsatisfactory)
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Why is thermodynamics important in cycling?
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Hyperplasticity

Thermodynamics

First and Second Laws \ Two scalar functions:

Stored energy = f(strain, plastic strain)

Dissipation = d(plastic strain rate)
Some standard
maths

Plasticity model:

Stored energy = f(strain, plastic strain)
Yield surface = y(stress, etc) \‘ Model non-linearity in
cyclic loading
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Modelling cycling with “multisurface plasticity”
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.... automatically obeys “Masing rules” on cycling
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Modelling ratcheting: the “HARM” approach

Add a special “ratcheting element”, giving a small additional displacement
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Scaling of ratcheting (“Acceleration”)

N
do, =R e sign(c) DR, |da,|
n=1

Complete model definition
2
N N
fzg{a— Zocn —oc,] + Zia%
2 ~ ~ 2
n=1 n=1

N
d=Y kylo,|+(cd, )

n=1

N

+Ar [Otr _RfaCS(G) Z Rn |O(.n|J
n=1

+Ah (B—|Otr|) I

qu

80 890 cycles No acceleration

(1000 cycles)

0.02 0.04 006 € 0.08
With acceleration
(50 cycles)

0.02 0.04 006 € 0.08

IVERSITY OF

XFORD



Continuum models (1): Clay

— Develop a model for undrained clay in Direct Simple Shear
* Includes rate effects and ratcheting

— Use model to compare with NGI “contour diagram” approach for
predicting strains during cycling
 Create artificial contour diagrams from the model to compare with NG|
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Compare with NGI contour diagrams
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Continuum models (2): Sand

— Develop “HySand” model for sand in triaxial tests
— Compare with Torsten Wichtmann’s database of cyclic tests

— Generalised to general stress states
— Impemented in FE codes ABAQUS and PLAXIS
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HySand — a constitutive model for sand under cyclic loading

Hyperplasticity: entire model defined by two functions:
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Drained
tests at
different
densities

Undrained
tests at
different
densities

Monotonic tests

800

—0.04 -

—0.06 -

—-0.08

b)

600 -

o 400 {

200 11/

0.00

0.04

0.08

&q

012 0.16

&g

1 1 U T T
012 016 0.20 0.00 0.04 0.08

0.20

500

400 -

a)

500 b)

80 160

Data by Wichmann,modelling by Simonin

p

002 003 004

&q

240 320 400 0.00 001

0.05

. v0=1.975, data
- v0=1.824, data
s ¥0=1,748, data
—— v0=1.975, model
—— v0=1.824, model
—— v0=1.748, model

- v=1,946, data
-~ v=1.814, data
v=1.728, data
—— v=1.946, model
—— v=1.814, model
—— v=1.728, model

NIVERSITY OF

'OXFORD




Cyclic tests: stress controlled
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Cyclic tests: strain controlled (small cycles)
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Cyclic tests: strain controlled (large cycles)
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... final remarks

* Modelling cyclic loading

* Hyperplasticity ensures that the models obey
thermodynamic principles -

* HARM is a method to add ratcheting to basic

multisurface models
— Reproduces “contour diagrams”

* HySand models cycling of sand \K

— Reproduces Wichtmann’s data well
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