Behavior of monopiles in sand under cyclic lateral loading – Results of 1g model tests

Prof. Dr.-Ing. Martin Achmus

Institute for Geotechnical Engineering, Leibniz University Hannover, Germany

achmus@igth.uni-hannover.de

Behavior of piles under cyclic horizontal loading

 \rightarrow General empirical approach desired

Accumulation model of LeBlanc (2010)

Model tests reported in literature - Overview

Reference	Model	Test type	Load cycles	Pile-soil-system	Model parameters
Peralta	$y_N = y_1 \cdot N^{\alpha p}$	1g	10.000	D = 6 cm	Rigid piles: $\alpha_p = 0.12$
(2010)	$y_N = y_1 \cdot (1 + t_p \cdot \ln N)$	13 static		L/D = 3.33-8.33	Flexible piles: $t_p = 0.21$
		21 cyclic		h = 240 mm = const.	
				$D_r = 0.45 \& 0.65$	
LeBlanc et	$\theta_N = \theta_1 \cdot \left(1 + T_{b,LB} \cdot T_{c,LB} \cdot \right.$	1g	7.400-	D = 8 cm	$\alpha_{LB} = 0.31$
al. (2010)	$N^{\alpha_{\theta,LB}}$	6 static	65.370	L/D = 4.5 = const.	$T_{b,LB}(\zeta_b, D_r = 0.38) = 0.414 \ \zeta_b - 0.023 \ *$
		15 cyclic		h/D = 5.38 = const.	$T_{b,LB}(\zeta_b, D_r = 0.04) = 0.303 \ \zeta_b - 0.044$
				$D_r = 0.04 \& 0.38$	$T_{c,LB}(\zeta_c) = a \zeta_c^{4} + b \zeta_c^{3} + c \zeta_c^{2} + d \zeta_c + e^{-**}$
Klinkvort	$y_N = y_1 \cdot N^{T_{b,K\&H} \cdot T_{c,K\&H}}$	Centrifuge	250-10.000	D = 2.8 cm & 4.0 cm	$T_{b,K\&H}(\zeta_b) = 0.61 \zeta_b - 0.013$
& Hededal		5 static		L/D = 6 = const.	$T_{c,K\otimes H}(\zeta_c) = (\zeta_c + 0.63) (\zeta_c - 1) (\zeta_c - 1.64)$
(2013)		12 cyclic		h/D = 15 = const.	
				$D_r = 0.79 - 0.96$	
Li et al.	$y_N = y_1 \cdot N^{\alpha_{y,L}}$	Field tests	3.173-5.017	D = 34 cm	$a_{y,L} = 0.085$
(2015)	$y_N = y_1 \cdot \left(1 + t_{y,L} \cdot \ln N\right)$	2 static		L/D = 6.47 = const.	$t_{y,L} = 0.125$
	$\theta_N = \theta_1 \cdot N^{\alpha_{\theta,L}}$	2 cyclic		h/D = 1.18 = const.	$\alpha_{\theta,L} = 0.060$
	$\theta_N = \theta_1 \cdot \left(1 + t_{\theta L} \cdot \ln N\right)$			$D_r \approx 1.0$	$t_{\theta,L} = 0.080$
Truong et	$y_N = y_1 \cdot N^{\alpha_{y,T}}$	Centrifuge	50-1.500	D = 1.1 cm & 4 cm	$\alpha_{v,T} = (0.3 - 0.22D_r) [1.2 (1 - \zeta_c^2) (1 - 0.3\zeta_c)]$
al. (2019)		3 static		L/D = 11.4 & 6	
		14 cyclic		h/D = 2 & 3	
				$D_r = 0.57 - 0.95$	
Li et al.	$y_N = y_1 \cdot N^{T_{b,L} \cdot T_{c,L}}$	Centrifuge	42-153	D = 1.8 cm	$T_{b,L}(\zeta_b) = 0.07335$
(2020)		2 static		L/D = 5 = const.	$T_{c,L}(\zeta_c, D_r = 0.8) = -1.707(\zeta_c + 0.31)^2 + 0.949$
		18 cyclic		h/D = 8	$T_{c,L}(\zeta_c, D_r = 0.5) = -1.14(\zeta_c + 0.323)^2 + 1.263$
				$D_r = 0.5 \& D_r = 0.8$	
*T _b and T _c fo	inctions fitted based on the grap	hical representat	ions given in Le	Blanc et al. (2010)	
** Polynomi	al factors for the determination of	of: $T_c (\zeta_c \le -0.3)$:	a = 113.33; b =	288.56; c = 238.88; d = 7	3.48; e = 9.94
		T(7 > 0.2)			0.00

Table 1: Overview of models for cyclic displacement or rotation accumulation resulting from lateral cyclic loading

4 Martin Achmus – Behavior of monopiles in sand under cyclic lateral loading

• 1g and ng model tests

Different accumulation models
 with different results

Effects of different parameters
 not clear

1g model tests at IGtH/University of Hannover

Test equipment and features:

- Aluminium model pile D = 50 mm, t = 3.2 mm \rightarrow almost rigid
- Two different silica sands: fine to medium sand (F34)

coarse sand (S40T)

 \rightarrow placed by air pluviation, D_r = 0.4 & 0.6

- Actuator for monotonic and cyclic loading, high precision load cell
- 2 laser distance transducers + magneto-inductive displacement transducer

Tests with monotonic loading

System	Sand type	L/D	Rel. Density Dr	Load eccentricity
1	F34	8	0.4	h/L = 0.6 / 0.8 / 1.0
2	F34	8	0.6	h/L = 1.0
3	F34	6	0.4	h/L = 0.8 / 1.0 / 1.2
4	S40T	8	0.4	h/L = 1.0
5	S40T	8	0.6	h/L = 1.0

- Variation of sand type, L/D, rel. density
 → 5 systems
- Variation of load eccentricity (systems 1 and 3)

Load-displacement curves

h/L = 0.3

h/L = 1.2

Test results

0.3

y/L [1]

0.2

Extrapolation

0.4

0.5

System 3:

Sand: F34

 $D_r = 0.4$

L = 30 c

0.1

0

- Good reproducibility confirmed by repeated tests
- Extrapolation of the measured curves acc. to Manoliu
 - → H_{ult} taken as the asymptotic value determined by Manoliu extrapolation → $\zeta_b = H_{max}/H_{ult}$

6 Martin Achmus – Behavior of monopiles in sand under cyclic lateral loading

Cyclic tests – Programme and results

Pile-soil system description						Load description			
System	Test	D	L/D	Soil	D _r	h/L	ζ_b	ζ _c	N
[-]	series	[mm]	[1]	[-]	[-]	[1]	[1]	[1]	[-]
1	1	50	8	F34	0.4	0.6	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
1	2	50	8	F34	0.4	0.8	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
1	3	50	8	F34	0.4	1.0	0.15	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
1	4	50	8	F34	0.4	1.0	0.25	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
1	5	50	8	F34	0.4	1.0	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
2	6	50	8	F34	0.6	1.0	0.15	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
2	7	50	8	F34	0.6	1.0	0.25	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
2	8	50	8	F34	0.6	1.0	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
3	9	50	6	F34	0.4	0.8	0.20	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
3	10	50	6	F34	0.4	0.8	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
3	11	50	6	F34	0.4	1.0	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
3	12	50	6	F34	0.4	1.2	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
4	13	50	8	S40T	0.4	1.0	0.15	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
4	14	50	8	S40T	0.4	1.0	0.25	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
4	15	50	8	S40T	0.4	1.0	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
5	16	50	8	S40T	0.6	1.0	0.15	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
5	17	50	8	S40T	0.6	1.0	0.25	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500
5	18	50	8	S40T	0.6	1.0	0.35	-0.75/-0.50/-0.25/0.00/0.25/1.00	2500

- 90 cyclic test (N = 2,500) and 18 monotonic tests
- Development of pile head displacement with cycle number for varying $\zeta_{\rm b}$ and $\zeta_{\rm c}$ -values

Model approach

8 Martin Achmus – Behavior of monopiles in sand under cyclic lateral loading

Results of the model tests with $\zeta_c = 0$

 $y_N = y_1 N^{\alpha_y}$

Comparison with other test results

$$\rightarrow \quad \alpha_y(\zeta_c = 0) = 0.0707 - 0.015 \ln \frac{\sigma'_{ref}}{p_a}$$

Model test results

\diamond	System 1 - TS 1: $\zeta_b = 0.35$; h/L = 0.6	+	System 2 - TS 7: $\zeta_{\rm b} = 0.25$; h/L = 1.0	\diamond	System 4 - TS 13: $\zeta_{\rm b} = 0.15$; h/L = 1.0
+	System 1 - TS 2: $\zeta_b = 0.35$; h/L = 0.8	0	System 2 - TS 8: $\zeta_b = 0.35$; h/L = 1.0	+	System 4 - TS 14: $\zeta_b = 0.25$; h/L = 1.0
0	System 1 - TS 3: $\zeta_b = 0.15$; h/L = 1.0	\diamond	System 3 - TS 9: $\zeta_{b} = 0.20$; h/L = 0.8	0	System 4 - TS 15: $\zeta_b = 0.35$; h/L = 1.0
☆	System 1 - TS 4: $\zeta_b = 0.25$; h/L = 1.0	+	System 3 - TS 10: $\zeta_b = 0.35$; h/L = 0.8	\diamond	System 5 - TS 16: $\zeta_b = 0.15$; h/L = 1.0
\bigtriangleup	System 1 - TS 5: $\zeta_{\rm b}$ = 0.35; h/L = 1.0	0	System 3 - TS 11: $\zeta_b = 0.35$; h/L = 1.0	+	System 5 - TS 17: $\zeta_b = 0.25$; h/L = 1.0
\diamond	System 2 - TS 6: $\zeta_b = 0.15$; h/L = 1.0	☆	System 3 - TS 12: $\zeta_b = 0.35$; h/L = 1.2	\bigcirc	System 5 - TS 18: $\zeta_b = 0.35$; h/L = 1.0

Extension by numerical simulations

- Stiffness Degradation Method with variation of pile-soil stiffness
- Pile-soil stiffness measure: S₀
 0 < S₀ < 1 (S₀ = 1: rigid)

Results:

- Largest $\alpha_{\text{y}}\text{-value}$ for rigid pile and high load level
- For high load level, α_y becomes constant \rightarrow Agreement with experimental tests
- Approach:

$$\alpha_y(\zeta_c = 0) = \left[-0.12 \cdot \arctan(-2.84 \cdot S_0 + 1.35) + 0.22\right] \cdot \left[\frac{4.5 \cdot \zeta_b}{1 + 11.54 \cdot \zeta_b}\right]$$

with
$$\zeta_b = \frac{H_{max}}{H(y = 0.05 D)}$$

10 Martin Achmus – Behavior of monopiles in sand under cyclic lateral loading

Effect of load type (ζ_c)

Model test results

Comparison with other test results

- Greatest accumulation rate for asymmetric two-way loading ($\zeta_c = -0.25...-0.4$)
- No clear trends (effect of D_r, L/D, soil type?)

$$f(\zeta_c) = 1 - 1.4844 \cdot \zeta_c - 0.1568 \cdot {\zeta_c}^2 + 2.4055 \cdot {\zeta_c}^3$$

11 Martin Achmus – Behavior of monopiles in sand under cyclic lateral loading

Thanks for your attention !

E-Mail contact: achmus@igth.uni-hannover.de