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Design of monopile-based Offshore Wind Turbines

Monopiles are subjected to repeated loads from wind, waves, current
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Design of monopile-based Offshore Wind Turbines

DNV-ST-0126 Support structures
for wind turbines

Standard

Edition 2021-12

/.4.4 Effects of cyclic loading

7.4.4.1 The effects of cyclic loading on the soil properties, called cyclic degradation, shall be considered in
foundation design for wind turbine structures.

7.4.4.2 Cyclic shear stresses may |lead to a gradual increase in pore pressure. Such pore pressure build-
up and the accompanying increase in cyclic and permanent shear strains may reduce the shear strength of
the soil. These effects shall be accounted for in the assessment of the characteristic shear strength for use
in design within the applicable limit state categories. These effects shall also be accounted for in the
assessment of permanent foundation rotations.

7.4.4.3 In the SLS design condition the effects of cyclic loading on the soil's shear modulus shall be

corrected for as relevant when dynamic motions, settlements and permanent (long-term) rotation shall be
calculated. See also [7.5.6].

The soil might show a different response under cyclic loading,
NG and therefore, their effects have to be accounted for in the design.



Design of monopile-based Offshore Wind Turbines

How to account for the effects of cyclic loading on soils in monopile design?
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Design of monopile-based Offshore Wind Turbines

The soil might show a different response under cyclic loading, and therefore, their effects have to be
accounted for in the design:
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Response of monopiles for integrated load analyses

Which features of the soil and monopile behaviour should be included in integrated analyses?
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The REDWIN model

Page et al. (2017)
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The REDWIN model: comparison against measurements
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Source: Byrne, B., et al. (2017), PISA: new design methods for offshore wind turbine monopiles, in Proceedings of the
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The REDWIN model: comparison against measurements

140 T T T T 50 T T T T T T
Experimental 45 Experimental
120 Macro-element model Macro-element model
40 |
100 35 | i
— — 30 L i
s % <
ke §e)
25 | i
S S
®© 60 [s
€ c 20 | i
8 8
S S
I 40 T 15 - .
10 | i
20
5L i
Page et al. (2018)
0 L L L L 0 I I I 1 1 1
0 20 40 60 80 100 0 1 2 3 4 5 6 7
Horizontal displacement [mm] Horizontal displacement [mm]

Source: Byrne, B., et al. (2017), PISA: new design methods for offshore wind turbine monopiles, in Proceedings of the
Society for Underwater Technology Offshore Site Investigation and Geotechnics.

Z
X



The REDWIN model: comparison against measurements

Full-scale field data of an OWT in the North Sea

VS.

Simulations with different foundation models:
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The REDWIN model: comparison against measurements
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The REDWIN model: comparison against measurements
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Design of monopile-based Offshore Wind Turbines

The soil might show a different response under cyclic loading, and therefore, their effects have to be

accounted for in the design:
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Design of monopile-based Offshore Wind Turbines

The soil might show a different response under cyclic loading, and therefore, their effects have to be

accounted for in the design:

In foundation design

By including them in the

different limit states




Geotechnical design of monopiles

The purpose of the monopile foundation is to transfer all
the loads from the wind turbine structure to the ground

safely and within the allowable deformations.

The design should satisfy:
o Ultimate Limit State (ULS)
o Serviceability Limit State (SLS)
o Fatigue Limit State (FLS)
o Target natural frequency

o Pile driveability




Effects of cyclic loading on soils

1. Effect of loading rate

Byrne, B. W, et al. (2020). Géotechnique 70, No. 11, 970-985 [https://doi.org/10.1680/jgeot. 18.PISA.003]
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Effects of cyclic loading on soils

1. Effect of loading rate

2. Effect of repeated loading

3. Effect of average and cyclic loads

Cyclic lateral response and failure mechanisms of semi-rigid
pile in soft clay: centrifuge tests and numerical modelling
Y. Hong, B. He, L.Z. Wang, Z. Wang, C.W.W. Ng, and D. MaSin
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Effects of cyclic loading on soils: the NGl model

The model includes the effect of rate

Cyclic tests are tuned to wave frequencies

The modelincludes cyclic degradation,

I.e. the stiffness and shear strength decrease
with increasing number of undrained cycles

The model includes the effect of cyclic and

average loads
Piot=P,t Pcy

and corresponding stress
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Effects of cyclic loading on soils: the NGl model
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From cyclic properties to monopile design

Per soil unit
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From cyclic properties to monopile design

Finite Element Analyses with cyclic soil properties

e UDCAM-S: for undrained soils

e PDCAM-S: for partially drained
soils, taking into account the effect
of pore pressure dissipation 1600
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From cyclic properties to monopile design

P-y curves with cyclic soil properties

Lateral load history
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Cyclic properties

Estimation of monotonic and cyclic soil design parameters for design
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We let the problem
define the

methodology

UDCAM

In Bifurc (internal software)

High Cycle Accumulation model
In PLAXIS 3D

SANISAND-MS

In OpenSeas

Hypoplasticity with IGS
In ABAQUS

NGI-ADP elastic
IN F2AT
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